( I)f'(x)=3x2-6ax=3x(x-2a),…(2分)
因为a>0,所以2a>0
当x变化时,f(x),f'(x)的变化情况如下表:
当x>2a或x<0时,f'(x)>0;当0<x<2a时,f'(x)<0.
所以,当a>0时,函数f(x)的单调递增区间是(-∞,0)和(2a,+∞),
单调递减区间是(0,2a).…(6分)
( II)f(x)=x3+3x2+b,f'(x)=3x2+6x=3x(x+2),x∈[-2,2]
当x变化时,f(x),f'(x)的变化情况如下表:
x | -2 | (-2,0) | 0 | (0,2) | 2 |
f'(x) | - | 0 | + | ||
f(x) | b+4 | 递减 | 极小值b | 递增 | b+20 |
|