是的因为arctanx+arctan(1/x)=π/2利用导数来证明,会比较简单一些.设f(x)=arctanx+arctan(1/x)则f'(x)=1/(1+x^2) + 1/[1+(1/x)^2] * (1/x)' =1/(1+x^2) + [-1/(1+x^2)] =0因此f(x)是一个常数,令x=1代入则f(x)=f(1)=arctan1+arctan1=pi/4 + pi/4 =pi/2证毕