两边对x求导:6y^2*y'-4y*y'+2y+2xy'-2x=0即y'=(x-y)/(3y^2-2y+x)令y'=0, 得:x=y再将x=y代入原方程,得:2x^3-2x^2+2x^2-x^2=1, 得:2x^3-x^2-1=02x^3-2x^2+x^2-1=02x^2(x-1)+(x-1)(x+1)=0(x-1)(2x^2+x+1)=0得唯一根x=1, 即极值点为(1, 1), 极值即为y=f(1)=1.