∫∫ e^[-√(x²+y²)]dxdy=∫∫ e^(-r)*r drdθ=∫[0→π/2] dθ∫[0→1] re^(-r) dr=(π/2)∫[0→1] re^(-r) dr=-(π/2)∫[0→1] r d(e^(-r))=-(π/2)re^(-r)+(π/2)∫[0→1] e^(-r) dr=-(π/2)re^(-r)-(π/2)e^(-r) |[0→1]=(π/2)(1-e⁻¹-e⁻¹)=(π/2)(1-2/e)