a^2-3a+1=0;
a=0时,方程不成立,所以a不等于0
两边同除以a
a-3+1/a=0;
a+1/a=3;
(a+1/a)^2=a^2+2a*(1/a)+(1/a)^2=a^2+(1/a)^2+2;
3^2=a^2+(1/a)^2+2;
a^2+(1/a)^2=7 (a-1/a)^2=a^2+(1/a)^2-2=7-2=5
已知a^2-3a+1=0,求下列各式的值:(1)a+1/a;(2)a^2+1/a^2a^2-3a+1=0把a=0代入,1=0不成立所以a不等于0左右同除以aa-3+1/a=0a+1/a=3(a+1/a)^2=a^2+2*a*1/a+1/a^2=a^2+2+1/a^2=9a^2+1/a^3=7a^3+1/a^3=(a+1/a)(a^2-a*1/a+1/a^2)=(a+1/a)(a^2-1+1/a^2)=3*(7-1)=18