请问这道数学题怎么做,详细步骤,谢谢

2024-11-17 00:52:13
推荐回答(4个)
回答(1):

答案应该选C。用排除法来做,将选项的临界值代入函数中,F(-1)=SIN(-3)/8,可知sin-3小于零,那么f(-1)小于零。此函数F(0)=0,以此类推,可选出c,函数在(1,2)可以

回答(2):

ans: A (-1,0)

f(x)= |x|sin(x-2)/[x(x-1)(x-2)^2]

lim(x->0-) f(x)

=lim(x->0-)  -xsin(x-2)/[x(x-1)(x-2)^2]

=-(1/4)sin2

lim(x->0+) f(x)

=lim(x->0+)  xsin(x-2)/[x(x-1)(x-2)^2]

=lim(x->0+)  sin(x-2)/[(x-1)(x-2)^2]

=sin(-2)/(0-1)(0-2)^2

=(1/4)sin2

lim(x->1-) f(x)

=lim(x->1-)  xsin(x-2)/[x(x-1)(x-2)^2]

=lim(x->1-)  sin(x-2)/[(x-1)(x-2)^2]

->+无穷

lim(x->2-) f(x)

=lim(x->2-)  xsin(x-2)/[x(x-1)(x-2)^2]

=lim(x->2-)  sin(x-2)/[(x-1)(x-2)^2]

->-无穷

lim(x->2+) f(x)

=lim(x->2+)  xsin(x-2)/[x(x-1)(x-2)^2]

=lim(x->2+)  sin(x-2)/[(x-1)(x-2)^2]

->+无穷

回答(3):

证明:在△ABC中,AB=AC
∴∠B=∠C
∵D是BC中点,所以BD=CD
∴△ABD≌△ACD
∴S△ABD=S△ACD
∵DE⊥AB,DF⊥AC
∴AB*DE=AC*DF
∵AB=AC
∴DE=DF

回答(4):