高等数学定积分问题

2024-11-01 16:20:59
推荐回答(2个)
回答(1):

f(x) = ∫e^(sint)sintdt, 则 f(x) 是常数。 f(x) = ∫e^(sint)sintdt + ∫e^(sint)sintdt 后者 令 u = t - π, 则 sint = sin(u+π) = -sinu I = ∫e^(sint)sintdt = ∫e^(-sinu)(-sinu)du 定积分与积分变量无关 = -∫e^(-sint)sintdt f(x) = ∫[e^(sint)-e^(-sint)]sintdt 在 (0, π) 内, sint > 0, e^(sint)-e^(-sint) > 0, 则 f(x) 是正常数。

回答(2):