叶绿体中含有绿色素(包括叶绿素a和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类。叶绿体色素的分离(1)取薄层色谱硅胶预制板一个,用点样毛细管吸取乙醇叶绿体色素提取液,沿硅胶板的长度方向涂在板的一边,使色素扩散的宽度限制在0.5cm以内,风干后,再重复操作数次。(2)在层析缸中加入适量的展开剂,将硅胶板带有色素的一端插入层析缸中,使硅胶板下端浸入展开剂中(但不要使色素带进入展开剂中)。迅速盖好层析缸盖。此时,展开剂借毛细管引力顺滤纸条向上扩散,并把叶绿体色素向上推动,不久即可看到各种色素的色带。(3)当展开剂前沿接近硅胶板边缘时,取出硅胶板,风干,即可看到分离的各种色素;叶绿素a为蓝绿色,叶绿素b为黄绿色,叶黄素为鲜黄色,胡萝卜素为橙黄色
叶绿素溶液在透射光下呈绿色,而在反射光下呈红色,这种现象称为叶绿素荧光现象。叶绿素为什么会发荧光呢?当叶绿素分子吸收光量子后,就由最稳定的、能量的最低状态-基态(ground state)上升到不稳定的高能状态-激发态(excited state)(图3-3)。叶绿素分子有红光和蓝光两个最强吸收区。如果叶绿素分子被蓝光激发,电子跃迁到能量较高的第二单线态;如果被红光激发,电子跃迁到能量较低的第一单线态。处于单线态的电子,其自旋方向保持原来状态,如果电子在激发或退激过程中自旋方向发生变化,该电子就进入能级较单线态低的三线态。由于激发态不稳定,迅速向较低能级
chl + h ────→chl*
基态 光子能量 激发态
状态转变,能量有的以热的形式释放,有的以光的形式消耗。从第一单线态回到基态所发射的光就称为荧光。处在第一三线态的叶绿素分子回到基态时所发出的光为磷光。荧光的寿命很短,只有10-8~10-10s。由于叶绿素分子吸收的光能有一部分消耗于分子内部的振动上,发射出的荧光的波长总是比被吸收的波长要长一些。所以叶绿素溶液在入射光下呈绿色,而在反射光下呈红色。在叶片或叶绿体中发射荧光很弱,肉眼难以观测出来,耗能很少,一般不超过吸收能量的5%,因为大部分能量用于光合作用。色素溶液则不同,由于溶液中缺少能量受体或电子受体,在照光时色素会发射很强的荧光。
另外,吸收蓝光后处于第二单线态的叶绿素分子,其贮存的能量虽远大于吸收红光处于第一单线态的状态,但超过的部分对光合作用是无用的,在极短的时间内叶绿素分子要从第二单线态返回第一单线态,多余的能量也是以热的形式耗散。因此,蓝光对光合作用而言,在能量利用率上不如红光高。
叶绿素的荧光和磷光现象都说明叶绿素能被光所激发,而叶绿素分子的激发是将光能转变为化学能的第一步。现在,人们用叶绿素荧光仪能精确测量叶片发出的荧光,而荧光的变化可以反映光合机构的状况,因此,叶绿素荧光被称为光合作用的探针。
叶绿素a为蓝绿色,叶绿素b为黄绿色,叶黄素为鲜黄色,胡萝卜素为橙黄色
青色、紫色、白色、橘红色。