解: A =
1 -2 2
-2 -2 4
2 4 -2
|A-λE| =
1-λ -2 2
-2 -2-λ 4
2 4 -2-λ
=c2+c3
1-λ 0 2
-2 2-λ 4
2 2-λ -2-λ
=r3-r2
1-λ 0 2
-2 2-λ 4
4 0 -6-λ
=(2-λ)*
1-λ 2
4 -6-λ
= -(λ + 7)(λ - 2)^2
A的特征值为 -7, 2, 2
(A+7E)X=0 的基础解系为: a1=(1,2,-2)'
(A-2E)X=0 的正交的基础解系为: a2=(2,-1,0)',a3=(1,2,5/2)'
单位化得
c1=(1/3,2/3,-2/3)'
c2=(2/√5,-1/√5,0)'
c3=(2/√45,4/√45,5/√45)'
令Q=(c1,c2,c3). 则Q是正交矩阵
所求正交变换为 X=QY
f = -7y1^2+2y2^2+2y3^2.