高中物理公式总结

2024-11-08 01:51:50
推荐回答(5个)
回答(1):

一、速度
1.速度Vt=Vo+at

2.有用推论Vt²-Vo²=2as

3.平均速度V平=s/t(定义式)

4.中间时刻速度Vt/2=V平=(Vt+Vo)/2

5.中间位置速度Vs/2=√[(Vo²+Vt²)/2]

6.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

7.实验用推论Δs=aT²{Δs为连续相邻相等时间(T)内位移之差}
二、常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)

5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
三、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子

学好物理的方法:

(一)三个基本。基本概念要清楚,基本规律要熟悉,基本方法要熟练。

(二)独立做题。要独立地(指不依赖他人),保质保量地做一些题。

(三)物理过程。要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。

(四)上课。上课要认真听讲,不走思或尽量少走思。

(五)笔记本。上课以听讲为主,还要有一个笔记本,有些东西要记下来。

(六)学习资料。学习资料要保存好,作好分类工作,还要作好记号。

(七)时间。时间是宝贵的,没有了时间就什么也来不及做了,所以要注意充分利用时间,而利用时间是一门非常高超的艺术。

回答(2):

一、质点的运动(1)------直线运动
1)匀变速直线运动
1、速度Vt=Vo+at 2.位移s=Vot+at²/2=V平t= Vt/2t
3.有用推论Vt²-Vo²=2as
4.平均速度V平=s/t(定义式)
5.中间时刻速度Vt/2=V平=(Vt+Vo)/2
6.中间位置速度Vs/2=√[(Vo²+Vt²)/2]
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT²{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、力(常见的力、力的合成与分解)
(1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向);
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

三、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

回答(3):

刘叔博客

匀变速直线运动公式

(适用于任何形式的运动)  
(加速度的定义式)匀变速直线运动四个基本公式
v=+at


匀变速直线运动三个推论



相互作用公式

G=mg(求重力)

F=kx(胡克定律)(滑动摩擦力公式)

牛顿运动定律公式

=ma(牛顿第二定律)

a=F/m(加速度决定式)

曲线运动与万有引力定律公式

平抛运动

水平方向:     x= 

竖直方向: =gt      y=匀速圆周运动

回答(4):

一、质点的运动(1)------直线运动
1)匀变速直线运动
1、速度Vt=Vo+at 2.位移s=Vot+at²/2=V平t= Vt/2t
3.有用推论Vt²-Vo²=2as
4.平均速度V平=s/t(定义式)
5.中间时刻速度Vt/2=V平=(Vt+Vo)/2
6.中间位置速度Vs/2=√[(Vo²+Vt²)/2]
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT²{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:(1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点.位移和路程.参考系.时间与时刻;速度与速率.瞬时速度。
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、力(常见的力、力的合成与分解)
(1)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向);
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

三、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

回答(5):

高中物理
公式
总结
物理
定理

定律
、公式表
一、
质点

运动
(1)------
直线运动
1)
匀变速直线运动
1.
平均速度
V平=s/t(定义式)
2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2
4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
6.位移s=V平t=Vot+at2/2=Vt/2t
7.
加速度
a=(Vt-Vo)/t
{以Vo为
正方向
,a与Vo同向(加速)a>0;
反向
则a<0}
8.实验用推论Δs=aT2
{Δs为连续相邻相等时间(T)内位移之差}
9.主要
物理量
及单位:
初速度
(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度
单位换算
:1m/s=3.6km/h。
注:
(1)平均速度是
矢量
;
(2)
物体
速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是
量度
式,不是决定式;
(4)其它相关内容:质点、
位移
和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与
速率

瞬时速度
〔见第一册P24〕。
2)
自由落体
运动
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的
匀加速直线运动
,遵循
匀变速直线运动规律
;
(2)a=g=9.8m/s2≈10m/s2(
重力加速度
在赤道附近较小,在高山处比平地小,方向
竖直
向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/2
2.末速度Vt=Vo-gt
(g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs
4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g
(从抛出落回原位置的时间)
注:
(1)全
过程
处理:是
匀减速直线运动
,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有
对称性
;
(3)上升与下落过程具有对称性,如在同
点速度
等值反向等。
二、质点的运动(2)----
曲线运动

万有引力
1)平抛运动
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt2/2
5.
运动时间
t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平
夹角
β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是
匀变速曲线运动
,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一
直线
上时
,物体做曲线运动。
2)
匀速圆周运动
1.
线速度
V=s/t=2πr/T
2.
角速度
ω=Φ/t=2π/T=2πf
3.
向心加速度
a=V2/r=ω2r=(2π/T)2r
4.向心力
F心
=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.
周期

频率
:T=1/f
6.角速度与线速度的关系:V=ωr
7.角速度与
转速
的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:
弧长
(s):米(m);
角度
(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径®:米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由
分力
提供,方向始终与速度方向垂直,指向
圆心
;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的
大小
,因此物体的动能保持不变,向心力不做功,但
动量
不断改变。
3)万有引力
1.
开普勒第三定律
:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:
常量
(与
行星
质量无关,取决于中心
天体
的质量)}
2.万有引力定律:F=Gm1m2/r2
(G=6.67×10-11N•m2/kg2,方向在它们的连线上)
3.天体上的
重力
和重力加速度:GMm/R2=mg;g=GM/R2
{R:天体半径(m),M:天体质量(kg)}
4.
卫星
绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.
地球同步卫星
GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球
表面
的高度,r地:
地球
的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量
密度
等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)
卫星轨道
半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)
地球卫星
的最大
环绕速度
和最小发射速度均为7.9km/s。
三、力(常见的力、
力的合成与分解
)
1)常见的力
1.重力G=mg
(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.
胡克定律
F=kx
{方向沿恢复
形变
方向,k:
劲度系数
(N/m),x:形变量(m)}
3.
滑动摩擦力
F=μFN
{与物体相对
运动方向
相反,μ:摩擦
因数
,FN:
正压力
(N)}
4.
静摩擦力
0≤f静≤fm
(与物体相对运动趋势方向相反,fm为
最大静摩擦力
)
5.万有引力F=Gm1m2/r2
(G=6.67×10-11N•m2/kg2,方向在它们的连线上)
6.
静电力
F=kQ1Q2/r2
(k=9.0×109N•m2/C2,方向在它们的连线上)
7.
电场力
F=Eq
(E:
场强
N/C,q:电量C,
正电荷
受的电场力与场强方向相同)
8.
安培力
F=BILsinθ
(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ
(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由
弹簧
自身决定;
(2)摩擦因数μ与压力大小及
接触面积
大小无关,由
接触面
材料
特性
与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量
符号
及单位B:磁感
强度
(T),L:
有效长度
(m),I:
电流
强度(A),V:带电粒子速度(m/s),q:
带电粒子
(
带电体
)电量(C);
(6)安培力与洛仑兹力方向均用
左手定则
判定。
2)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2,
反向:F=F1-F2
(F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理)
F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循
平行四边形定则
;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除
公式法
外,也可用作
图法
求解,此时要选择
标度
,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用
正负号
表示力的方向,化简为
代数
运算。
四、
动力学
(运动和力)
1.
牛顿第一运动定律
(惯性定律):物体具有
惯性
,总保持
匀速直线运动
状态或静止状态,直到有
外力
迫使它改变这种状态为止
2.
牛顿第二运动定律
:F合=ma或a=F合/ma{由
合外力
决定,与合外力方向一致}
3.
牛顿第三运动定律
:F=-F´{负号表示方向相反,F、F´各自作用在对方,
平衡力

作用力
反作用力
区别
,实际应用:反冲运动}
4.共点力的平衡F合=0,推广
{正交分解法、三力汇交
原理
}
5.超重:FN>G,失重:FN{加速度方向向下,均失重,加速度方向向上,均超重}
6.
牛顿运动定律
的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于
微观粒子
〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
五、振动和波(
机械振动
与机械振动的传播)
1.
简谐振动
F=-kx
{F:
回复力
,k:
比例系数
,x:位移,负号表示F的方向与x始终反向}
2.
单摆
周期T=2π(l/g)1/2
{l:摆长(m),g:当地重力加速度值,成立条件:
摆角
θ<100;l>>r}
3.
受迫振动
频率
特点
:f=f驱动力
4.发生
共振条件
:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.
机械波

横波

纵波
〔见第二册P2〕
6.
波速
v=s/t=λf=λ/T{波
传播过程
中,一个周期向前传播一个
波长
;波速大小由
介质
本身所决定}
7.
声波
的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过
障碍物
或孔继续传播)条件:障碍物或孔的
尺寸
比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、
振幅
相近、振动方向相同)
10.
多普勒效应
:由于
波源

观测者
间的相互运动,导致波源
发射频率
与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的
固有频率
与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是
波峰
与波峰或波谷与波谷相遇处,减弱区则是
波峰与波谷
相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种
方式
;
(4)干涉与衍射是波特有的;
(5)
振动图象
与波动图象;
(6)其它相关内容:
超声波
及其应用〔见第二册P22〕/振动中的
能量转化
〔见第一册P173〕。
六、
冲量与动量
(物体的受力与动量的变化)
1.动量:p=mv
{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft
{I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.
动量定理
:I=Δp或Ft=mvt–mvo
{Δp:动量变化Δp=mvt–mvo,是矢量式}
5.
动量守恒定律
:p前总=p后总或p=p’´也可以是m1v1+m2v2=m1v1´+m2v2´
6.弹性碰撞:Δp=0;ΔEk=0
{即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm
{ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm
{碰后
连在一起
成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1´=(m1-m2)v1/(m1+m2)
v2´=2m1v1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、
动量守恒
)
11.
子弹
m水平速度vo射入静止置于水平光滑
地面
的长木块M,并嵌入其中一起运动时的
机械能
损失
E损=mvo2/2-(M+m)vt2/2=fs相对
{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫
对心
碰撞,速度方向在它们“中心”的连线上;
(2)以上
表达式
除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(
碰撞问题
、爆炸问题、反冲问题等);
(4)
碰撞过程
(时间极短,发生碰撞的物体构成的系统)视为动量守恒,
原子
核衰变
时动量守恒;
(5)爆炸过程视为动量守恒,这时
化学能
转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、
航天技术
的发展和
宇宙
航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab
{m:
物体的质量
,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab
{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.
电功
:W=UIt(普适式)
{U:
电压
(V),I:电流(A),t:通电时间(s)}
5.
功率
:P=W/t(定义式)
{P:功率[瓦(W)],W:t时间内所做的功(J),t:做功
所用
时间(s)}
6.汽车
牵引力
的功率:P=Fv;P平=Fv平
{P:
瞬时功率
,P平:
平均功率
}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大
行驶速度
(vmax=P额/f)
8.
电功率
:P=UI(普适式)
{U:
电路
电压(V),I:电路电流(A)}
9.
焦耳定律
:Q=I2Rt
{Q:电热(J),I:电流强度(A),R:
电阻
值(Ω),t:通电时间(s)}
10.
纯电阻电路
中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2
{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.
重力势能
:EP=mgh
{EP
:重力势能(J),g:重力加速度,h:竖直高度(m)(从
零势能面
起)}
13.
电势能
:EA=qφA
{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的
电势
(V)(从零势能面起)}
14.
动能定理
(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的
总功
,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.
机械能守恒定律
:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α<90O
做正功;90O<α≤180O做
负功
;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、
分子力
)做正功,则重力(弹性、电、
分子
)势能减少
(4)重力做功和电场力做功均与
路径
无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧
弹性势能
E=kx2/2,与劲度系数和形变量有关。
八、
分子动理论

能量守恒定律
1.
阿伏加德罗
常数
NA=6.02×1023/mol;分子直径
数量级
10-10米
2.
油膜法
测分子直径d=V/s
{V:单分子油膜的
体积
(m3),S:油膜
表面积
(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无
规则

热运动
;分子间存在
相互作用力

4.分子间的
引力

斥力
(1)r(2)r=r0,f引=f斥,F分子力=0,E
分子势能
=Emin(
最小值
)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.
热力学第一定律
W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的
热量
(J),ΔU:增加的内能(J),涉及到
第一类永动机
不可造出〔见第二册P40〕}
6.
热力学第二定律
克氏表述:不可能使热量由
低温
物体传递到高温物体,而不引起其它变化(
热传导

方向性
);
开氏表述:不可能从
单一热源
吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到
第二类永动机
不可造出〔见第二册P44〕}
7.
热力学第三定律
:
热力学零度
不可达到{
宇宙温度
下限
:-273.15摄氏度(热力学零度)}
注:
(1)布朗
粒子
不是分子,布朗
颗粒
越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)
气体
膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的
分子动能
和分子势能的
总和
,对于
理想气体
分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/
能源
的开发与利用、环保〔见第二册P47〕/物体的内能、
分子的动能
、分子势能〔见第二册P47〕。
九、气体的
性质
1.气体的
状态参量
:
温度:宏观上,物体的冷热程度;
微观
上,物体
内部
分子无规则运动的剧烈程度的标志,
热力学温度与
摄氏温度
关系:T=t+273
{T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的
空间
,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)
2.气体
分子运动
的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的
状态方程
:p1V1/T1=p2V2/T2
{PV/T=
恒量
,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和
物质的量
有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、
电场
1.两种
电荷

电荷守恒定律
、元电荷:(e=1.60×10-19C);带电体
电荷量
等于元电荷的
整数

2.
库仑定律
:F=kQ1Q2/r2(在
真空
中){F:
点电荷
间的作用力(N),k:
静电力常量
k=9.0×109N•m2/C2,Q1、Q2:
两点
电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,
异种
电荷互相吸引}
3.
电场强度
:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的
叠加原理
),q:
检验电荷
的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2
{r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.
匀强电场
的场强E=UAB/d
{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE
{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA
{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA
{带电体在电场中从A位置到B位置时电势能的
差值
}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB
(电势能的增量等于电场力做功的负值)
12.
电容
C=Q/U(定义式,计算式)
{C:电容(F),Q:电量(C),U:电压(两
极板
电势差)(V)}
13.
平行板电容器
的电容C=εS/4πkd(S:
两极
板正对面积,d:两极板间的垂直距离,ω:
介电常数
)
常见
电容器
〔见第二册P111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直
电场方向
以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平
垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动
平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电
金属
小球
接触时,电量分配
规律
:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)
电场线
从正电荷出发终止于
负电荷
,电场线不相交,
切线
方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册P98];
(4)电场强度(矢量)与电势(
标量
)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于
静电
平衡
导体
是个
等势体
,表面是个
等势面
,导体
外表面
附近的电场线垂直于导体表面,导体内部
合场强
为零,导体内部没有
净电荷
,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)
电子
伏(eV)是能量的单位,1eV=1.60×10-19J;
(8)其它相关内容:
静电屏蔽
〔见第二册P101〕/
示波管

示波器
及其应用〔见第二册P114〕等势面〔见第二册P105〕。
十一、
恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.
欧姆定律
:I=U/R
{I:导体电流强度(A),U:导体两端电压(V),R:导体
阻值
(Ω)}
3.电阻、
电阻定律
:R=ρL/S{ρ:电阻率(Ω•m),L:导体的
长度
(m),S:导体
横截面积
(m2)}
4.
闭合电路欧姆定律
:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:
电源
电动势
(V),R:
外电路
电阻(Ω),r:
电源内阻
(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:
电热
(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、
电源效率
:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:
路端电压
(V),η:电源效率}
9.电路的串/并联
串联电路(P、U与R成正比)
并联电路(P、I与R
成反比
)
电阻关系(串同并反)
R串=R1+R2+R3+
1/R并=1/R1+1/R2+1/R3+
电流关系
I总=I1=I2=I3
I并=I1+I2+I3+
电压关系
U总=U1+U2+U3+
U总=U1=U2=U3
功率分配
P总=P1+P2+P3+
P总=P1+P2+P3