设:2a+b=m、b+1=n,则:
m+3n=2a+4b+3
且:
1/m+1/n=1
则:
2a+4b+3
=m+3n
=(m+3n)×1
=(m+3n)×[1/m×1/n]
=4+[(m/n)+(3n/m)]
因为:(m/n)+(3n/m)≥2√3
则:
2a+4b+3≥4+2√3
2a+4b≥2√3+1
a+2b≥√3+(1/2)
即:a+2b的最小值是:√3+(1/2)
令a+2b=t,则a=t-2b代入得,1/(2t-3b)+1/(b+1)=1,化简得:3b^2-(2t-1)b+1=0,该方程有大于0的实根,由Δ>=0,(2t-1)/6>0,得t≥√3+(1/2)