M/(x^2-x-2)=X/(X+1)-(X-1)/(X-2)
=>M/(X^2-X-2)=[X(X-2)-(X-1)(X+1)]/[(X+1)(X-2)]
=>M/(X^2-X-2)=(1-2X)/[X^2-X-2]
=>M=1-2X
(X^2+3X+2)*(X^2+7X+12)+1
=X^4+3X^3+2X^2+7X^3+21X^2+14X+12X^2+36X+25
=X^4+10X^3+35X^2+50X+25
设(x^2+ax+b)^2=x^4+ax^3+bx^2+ax^3+a^2x^2+abx+bx^2+abx+b^2
=x^4+2ax^3+(a^2+2b)x^2+2abx+b^2
有 2a=10
a^2+2b=35
2ab=50
b^2=25
显然a=5,b=5满足上面四个式子。
所以(X+1)(X+2)(X+3)(X+4)+1=X^4+10X^3+35X^2+50X+25=(x^2+5x+5)^2
当M为-1时
X+1分之X-X-2分之X-1是什么回事,是不是抄错题了