计算机网络的发展可分为以下四个阶段。
(1)面向终端的计算机通信网:其特点是计算机是网络的中心和控制者,终端围绕中心计算机分布在各处,呈分层星型结构,各终端通过通信线路共享主机的硬件和软件资源,计算机的主要任务还是进行批处理,在20世纪60年代出现分时系统后,则具有交互式处理和成批处理能力。
(2)分组交换网:分组交换网由通信子网和资源子网组成,以通信子网为中心,不仅共享通信子网的资源,还可共享资源子网的硬件和软件资源。网络的共享采用排队方式,即由结点的分组交换机负责分组的存储转发和路由选择,给两个进行通信的用户段续(或动态)分配传输带宽,这样就可以大大提高通信线路的利用率,非常适合突发式的计算机数据。
(3)形成计算机网络体系结构:为了使不同体系结构的计算机网络都能互联,国际标准化组织ISO提出了一个能使各种计算机在世界范围内互联成网的标准框架—开放系统互连基本参考模型OSI.。这样,只要遵循OSI标准,一个系统就可以和位于世界上任何地方的、也遵循同一标准的其他任何系统进行通信。
(4)高速计算机网络:其特点是采用高速网络技术,综合业务数字网的实现,多媒体和智能型网络的兴起。
扩展资料:
第一代计算机网络---远程终端联机阶段;
第二代计算机网络---计算机网络阶段;
第三代计算机网络---计算机网络互联阶段;
第四代计算机网络---国际互联网与信息高速公路阶段;
计算机网络的分类与一般的事物分类方法一样,可以按事物所具有的不同性质特点(即事物的属性)分类。计算机网络通俗地讲就是由多台计算机(或其它计算机网络设备)通过传输介质和软件物理(或逻辑)连接在一起组成的。
总的来说计算机网络的组成基本上包括:计算机、网络操作系统、传输介质(可以是有形的,也可以是无形的,如无线网络的传输介质就是空间)以及相应的应用软件四部分。
时延是指数据(一个报文或分组,甚至比特)从网络(或链路)的一端传送到另一端所需的时间。时延是个很重要的性能指标,它有时也称为延迟或迟延。网络中的时延是由以下几个不同的部分组成的。
① 发送时延。
发送时延是主机或路由器发送数据帧所需要的时间,也就是从发送数据帧的第一个比特算起,到该帧的最后一个比特发送完毕所需的时间。
因此发送时延也叫做传输时延。发送时延的计算公式是:
发送时延=数据帧长度(bit/s)/信道带宽(bit/s)
由此可见,对于一定的网络,发送时延并非固定不变,而是与发送的帧长(单位是比特)成正比,与信道带宽成反比。
② 传播时延。
传播时延是电磁波在信道中传播一定的距离需要花费的时间。传播时延的计算公式是:
传播时延=信道长度(m)/电磁波在信道上的传播速率(m/s)
电磁波在自由空间的传播速率是光速,即3.0×10km/s。电磁波在网络传输媒体中的传播速率比在自由空间要略低一些。
③ 处理时延。
主机或路由器在收到分组时要花费一定的时间进行处理,例如分析分组的首部,从分组中提取数据部分,进行差错检验或查找适当的路由等,这就产生了处理时延。
④ 排队时延。
分组在经过网络传输时,要经过许多的路由器。但分组在进入路由器后要先在输入队列中排队等待处理。在路由器确定了转发接口后,还要在输出队列中排队等待转发。这就产生了排队时延。
这样,数据在网络中经历的总时延就是以上四种时延之和:
总时延=发送时延+传播时延+处理时延+排队时延
参考资料:百度百科——计算机网络
计算机网络的形成与发展经历了四个阶段:
第一阶段:计算机技术与通信技术相结合,形成了初级的计算机网络模型。此阶段网络应用主要目的是提供网络通信、保障网络连通。这个阶段的网络严格说来仍然是多用户系统的变种。美国在1963年投入使用的飞机定票系统SABBRE-1就是这类系统的代表。
第二阶段:在计算机通信网络的基础上,实现了网络体系结构与协议完整的计算机网络。此阶段网络应用的主要目的是:提供网络通信、保障网络连通,网络数据共享和网络硬件设备共享。这个阶段的里程碑是美国国防部的ARPAnet网络。目前,人们通常认为它就是网络的起源,同时也是Internet的起源
第三阶段:计算机解决了计算机联网与互连标准化的问题,提出了符合计算机网络国际标准的“开放式系统互连参考模型(OSI RM)”,从而极大地促进了计算机网络技术的发展。此阶段网络应用已经发展到为企业提供信息共享服务的信息服务时代。具有代表性的系统是1985年美国国家科学基金会的NSFnet。
第四阶段:计算机网络向互连、高速、智能化和全球化发展,并且迅速得到普及,实现了全球化的广泛应用。代表作是Internet。
扩展资料:
计算机网络也称计算机通信网。关于计算机网络的最简单定义是:一些相互连接的、以共享资源为目的的、自治的计算机的集合。若按此定义,则早期的面向终端的网络都不能算是计算机网络,而只能称为联机系统(因为那时的许多终端不能算是自治的计算机)。
但随着硬件价格的下降,许多终端都具有一定的智能,因而“终端”和“自治的计算机”逐渐失去了严格的界限。若用微型计算机作为终端使用,按上述定义,则早期的那种面向终端的网络也可称为计算机网络。
另外,从逻辑功能上看,计算机网络是以传输信息为基础目的,用通信线路将多个计算机连接起来的计算机系统的集合,一个计算机网络组成包括传输介质和通信设备。
从用户角度看,计算机网络是这样定义的:存在着一个能为用户自动管理的网络操作系统。由它调用完成用户所调用的资源,而整个网络像一个大的计算机系统一样,对用户是透明的。
一个比较通用的定义是:利用通信线路将地理上分散的、具有独立功能的计算机系统和通信设备按不同的形式连接起来,以功能完善的网络软件及协议实现资源共享和信息传递的系统。
从整体上来说计算机网络就是把分布在不同地理区域的计算机与专门的外部设备用通信线路互联成一个规模大、功能强的系统,从而使众多的计算机可以方便地互相传递信息,共享硬件、软件、数据信息等资源。简单来说,计算机网络就是由通信线路互相连接的许多自主工作的计算机构成的集合体。
最简单的计算机网络就只有两台计算机和连接它们的一条链路,即两个节点和一条链路。
这个新型网络必须满足一些基本要求:
1:不是为了打电话,而是用于计算机之间的数据传送。
2:能连接不同类型的计算机。
3:所有的网络节点都同等重要,这就大大提高了网络的生存性。
4:计算机在通信时,必须有迂回路由。当链路或结点被破坏时,迂回路由能使正在进行的通信自动地找到合适的路由。
5:网络结构要尽可能地简单,但要非常可靠地传送数据。
根据这些要求,一批专家设计出了使用分组交换的新型计算机网络。而且,用电路交换来传送计算机数据,其线路的传输速率往往很低。
因为计算机数据是突发式地出现在传输线路上的,比如,当用户阅读终端屏幕上的信息或用键盘输入和编辑一份文件时或计算机正在进行处理而结果尚未返回时,宝贵的通信线路资源就被浪费了。
参考资料:百度百科——计算机网络
第一阶段 (以单计算机为中心的联机终端系统)特点:
计算机网络主要是计算机技术和信息技术相结合的产物,它从20世纪50年代起步至今已经有50多年的发展历程,在20世纪50年代以前,因为计算机主机相当昂贵,而通信线路和通信设备相对便宜,为了共享计算机主机资源和进行信息的综合处理,形成了第一代的以单主机为中心的联机终端系统.
在第一代计算机网络中,因为所有的终端共享主机资源,因此终端到主机都单独占一条线路,所以使得线路利用率低,而且因为主机既要负责通信又要负责数据处理,因此主机的效率低,而且这种网络组织形式是集中控制形式,所以可靠性较低,如果主机出问题,所有终端都被迫停止工作.面对这样的情况,当时人们提出这样的改进方法,就是在远程终端聚集的地方设置一个终端集中器,把所有的终端聚集到终端集中器,而且终端到集中器之间是低速线路,而终端到主机是高速线路,这样使得主机只要负责数据处理而不要负责通信工作,大大提高了主机的利用率.
第二阶段(以通信子网为中心的主机互联)特点:
随着计算机网络技术的发展,到20世纪60年代中期,计算机网络不再极限于单计算机网络,许多单计算机网络相互连接形成了有多个单主机系统相连接的计算机网络, 这样连接起来的计算机网络体系有两个特点:
①多个终端联机系统互联,形成了多主机互联网络
②网络结构体系由主机到终端变为主机到主机
后来这样的计算机网络体系在慢慢演变,向两种形式演变,第一种就是把主机的通信任务从主机中分离出来,由专门的CCP(通信控制处理机)来完成,CCP组成了一个单独的网络体系,我们称它为通信子网,而在通信子网连基础上接起来的计算机主机和终端则形成了资源子网,导致两层结构体现出现.第二种就是通信子网逐规模渐扩大成为社会公用的计算机网络,原来的CCP成为了公共数据通用网.
第三阶段(计算机网络体系结构标准化)特点:
随着计算机网络技术的飞速发展,计算机网络的逐渐普及,各种计算机网络怎么连接起来就显得相当的复杂,因此需要把计算机网络形成一个统一的标准,使之更好的连接,因为网络体系结构标准化就显得相当重要,在这样的背景下形成了体系结构标准化的计算机网络.
为什么要使计算机结构标准化呢,有两个原因,第一个就是因为为了使不同设备之间的兼容性和互操作性更加紧密.第二个就是因为体系结构标准化是为了更好的实现计算机网络的资源共享,所以计算机网络体系结构标准化具有相当重要的作用
一以单计算机为中心的联机终端系统
二以通信子网为中心的主机互联
三计算机网络体系结构标准化