求定积分x눀cos2xdx上限为π下限为0

2024-11-19 03:44:21
推荐回答(1个)
回答(1):

∫x²cos2xdx
=1/2·∫x²dsin2x
=1/2·x²sin2x-1/2·∫sin2xdx²
=1/2·x²sin2x-∫xsin2xdx
=1/2·x²sin2x+1/2∫xdcos2x
=1/2·x²sin2x+1/2xcos2x-1/2∫cos2xdx
=1/2·x²sin2x+1/2xcos2x-1/4∫dsin2x
=1/2·x²sin2x+1/2xcos2x-1/2sin2x
所以求定积分x²cos2xdx上限为π下限为0
=(1/2·x²sin2x+1/2xcos2x-1/2cos2x)
|(0到π)
=-π
您好,土豆实力团为您答疑解难。
如果本题有什么不明白可以追问,如果满意记得采纳。
答题不易,请谅解,谢谢。
另祝您学习进步!