证明:(1)∵四边形ABCD是平行四边形,
∴AO=CO.
又∵△ACE是等边三角形,
∴EO⊥AC(三线合一),即AC⊥BD,
∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形).
(2)∵四边形ABCD是平行四边形,
∴AO=CO.
又∵△ACE是等边三角形,
∴EO平分∠AEC(三线合一),
∴∠AED=
1
2
∠AEC=
1
2
×60°=30°,
又∵∠AED=2∠EAD
∴∠EAD=15°,
∴∠ADO=∠DAE+∠DEA=15°+30°=45°(三角形的一一个外角等于和它外角等于不相邻的两内角之和),
∵四边形ABCD是菱形,
∴∠ADC=2∠ADO=90°,
∴平行四边形ABCD是正方形.