分母(1-sinx-cosx)*(1+sinx+cosx)=1-(sinx+cosx)^2
=1-(2sinxcosx+1)=-2sinxcosx
分子(1+cosx-sinx)*(1+sinx+cosx)=(1+cosx)^2-sinx^2
=1+2cosx+cosx^2-sinx^2=2cosx(cosx+1)
所以(1+cosx-sinx)/(1-sinx-cosx)=2cosx(cosx+1)/-2sinxcosx
=-(cosx+1)/sinx
(1+cosx-sinx)/(1-sinx-cosx)
=[2(cos(x/2))^2-2sin(x/2)cos(x/2)]/(2(sin(x/2))^2-2sin(x/2)cos(x/2)]
={2cos(x/2)[cos(x/2)-sin(x/2)]}/{2sin(x/2)[sin(x/2)-cos(x/2)]}
=-cot(x/2)
(1+cosx-sinx)/(1-sinx-cosx)=(1+cosx-sinx)/(1-cosx-sinx)=[2(cosx/2)^2-2sinx/2cosx/2]/[2(sinx/2)^2-2sinx/2cosx/2]=cotx/2(cosx/2-sinx/2)/(sinx/2-cosx/2)=-cotx /2
-(cos x+1)/sin x