问一道高中数学数列的

2024-11-09 10:33:40
推荐回答(6个)
回答(1):

对,用的方法就是裂项相加法

因为an=4n-3
所以4/[an*a(n+1)]=4/[(4n-3)*(4n+1)]=1/(4n-3)-1/(4n+1)

所以{4/[an*a(n+1)]}的前n项和是
(1/1-1/5)+(1/5-1/9)+...+[1/(4n-3)-1/(4n+1)]
=1+(-1/5+1/5)+(-1/9+1/9)+...+[-1/(4n-3)+1/(4n-3)]-1/(4n+1)
=1-1/(4n+1)
=4n/(4n+1)

回答(2):

两个求,一个答案??an乘以a(n+1)作为分母么?

回答(3):

求 an乘以a(n+1)分之4 求数列 前n项和
这部分是什么意思啊。。两个问题一个答案?

回答(4):

裂项求和为数列中常用的求和方法之一,也是高考常考的知识点,数列求和一般先分析通项公式,本题通项4/(4n-3)(4n+1)=1/(4n-3)--1/(4n+1),结果求和时只剩首项中的1,末项中的)--1/(4n+1),所以合为1--1/(4n+1),答案满意吗,估计你是高一的学生

回答(5):

运用求和中很常见的裂项相肖法。就是将式子变形为两项相减,以便求和中都抵消了。an=4n-3
所以4/[an*a(n+1)]=4/[(4n-3)*(4n+1)]=1/(4n-3)-1/(4n+1)

所以{4/[an*a(n+1)]}的前n项和是
(1/1-1/5)+(1/5-1/9)+...+[1/(4n-3)-1/(4n+1)]
=1+(-1/5+1/5)+(-1/9+1/9)+...+[-1/(4n-3)+1/(4n-3)]-1/(4n+1)
=1-1/(4n+1)
=4n/(4n+1)

回答(6):

因为4/[(4n-3)(4n+1)]=1/(4n-3)-1/(4n+1)
所以1-1/5+……+1/(4n-3)-1/(4n+1)=1-1/(4n+1)=4n/(4n+1)!