用柯西不等式
(1+1+1)[(a+1/a)^2+(b+1/b)^2+(c+1/c)^2]>=(a+1/a+b+1/b+c+1/c)^2=(1+1/a+1/b+1/c)^2
(a+b+c)(1/a+1/b+1/c)>=(1+1+1)^2=9
1/a+1/b+1/c>=9
(1+1/a+1/b+1/c)^2>=(1+9)^2=100
(1+1+1)[(a+1/a)^2+(b+1/b)^2+(c+1/c)^2]>=100
(a+a/1)^2+(b+b/1)^2+(c+c/1)^2>=100/3
原式成立
由柯西不等式3[(a+1/a)^2+(b+1/b)^2+(c+/1/c)^2]=(1+1+1)[(a+1/a)^2+(b+1/b)^2+(c+/1/c)^2]>=(a+1/a+b+1/b+c+1/c)^2=[1+(bc+ca+ab)/(abc)]^2
而(bc+ca+ab)/(abc)>=3(bccaab)^(1/3)/(abc)=3/(abc)^(1/3)>=3/[(a+b+c)/3]=9
故(a+1/a)^2+(b+1/b)^2+(c+/1/c)^2>=(1+9)^2/3=100/3
当且仅当a=b=c时,等号成立 a+b+c=1
1/a+1/b+1/c=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=1+b/a+c/a+a/b+1+c/b+a/c+b/c+1
=(b/a+a/b)+(c/a+a/c)+(b/c+c/b)+3
≥2+2+2+3=9
1/a+1/b+1/c≥9.
(a+b+c)(1/a+1/b+1/c)>=(1+1+1)^2=9
由柯西不等式3[(a+1/a)^2+(b+1/b)^2+(c+/1/c)^2]=(1+1+1)[(a+1/a)^2+(b+1/b)^2+(c+/1/c)^2]>=(a+1/a+b+1/b+c+1/c)^2=[1+(bc+ca+ab)/(abc)]^2
而(bc+ca+ab)/(abc)>=3(bccaab)^(1/3)/(abc)=3/(abc)^(1/3)>=3/[(a+b+c)/3]=9
故(a+1/a)^2+(b+1/b)^2+(c+/1/c)^2>=(1+9)^2/3=100/3
当且仅当a=b=c时,等号成立