问一题高中数学三角函数题,谢谢,详解,谢谢

求y=2sinx+(cosx)^2+cos2x+1 的最值。谢谢
2024-11-07 01:46:04
推荐回答(2个)
回答(1):

y=2sinx+(cosx)^2+cos2x+1
=y=2sinx+1-(sinx)^2+1-2(sinx)^2+1
=-3(sinx)^2+2sinx+3
设sinx=t,则∈[-1,1]
函数化为
y=-3t^2+2t+3
当t=-1时有最小值-2,当t=1/3时有最大值10/3

回答(2):

y=(sinx+1)^2,最大值4,最小值0