柯西不等式的公式,一一列举

2024-11-06 18:23:19
推荐回答(2个)
回答(1):

1、二维形式:

(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2

等号成立条件:ad=bc

2、三角形式:

√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]

等号成立条件:ad=bc

3、向量形式:

|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)

等号成立条件:β为零向量,或α=λβ(λ∈R)。

4、一般形式:

(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2

等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。

扩展资料:

基本不等式

(1)对正实数a,b,有a^2+b^2≥2ab (当且仅当a=b时取“=”号),a^2+b^2>0>-2ab

(2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0

(3)对负实数a,b,有a+b<0<2√(a*b)

(4)对实数a,b(a≥b),有a(a-b)≥b(a-b)

(5)对非负数a,b,有a^2+b^2≥2ab≥0

(6)对非负数a,b,有a^2+b^2 ≥1/2*(a+b)^2≥ab

(7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2

不等式的证明方法

(1)比较法:作差比较:.

作差比较的步骤:

①作差:对要比较大小的两个数(或式)作差。

②变形:对差进行因式分解或配方成几个数(或式)的完全平方和。

③判断差的符号:结合变形的结果及题设条件判断差的符号。

(2)反证法:正难则反。

(3)放缩法:将不等式一侧适当的放大或缩小以达证题目的。

回答(2):

柯西不等式   二维形式  (a^2+b^2)(c^2 + d^2)≥(ac+bd)^2  等号成立条件:ad=bc   三角形式  √(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]  等号成立条件:ad=bc  注:“√”表示平方根,   向量形式  |α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)  等号成立条件:β为零向量,或α=λβ(λ∈R)。   一般形式  (∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2  等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。  上述不等式等同于图片中的不等式。   推广形式  (x1+y1+…)(x2+y2+…)…(xn+yn…)≥[(Πx)^(1/m)+(Πy)^(1/m)+…]^m  注:“Πx”表示x1,x2,…,xn的乘积,其余同理。此推广形式又称卡尔松不等式,其表述是:在m*n矩阵中,各行元素之和的几何平均  不小于各列元素之和的几何平均之积。(应为之积的几何平均之和)

求采纳