求极限,lim(x->0) (e^x-e^sinx ) ⼀ [ (tanx )^2 *

2024-11-08 18:05:46
推荐回答(2个)
回答(1):

简单计算一下即可,答首肢芹历案如者首世图所示

回答(2):

利用等价无穷小和L'Hospital's Rule 即可裂枝迟
lim(x->0) (e^x-e^sinx ) / [ (tanx )^2 * ln(1+2x)]
=lim(x->0) e^x(e^(x-sinx)-1 ) / [ (tanx )^2 * ln(1+2x)]
=lim(x->0) (x-sinx ) / [ (x)^2 * 2x)]
=lim(x->0) (1-cosx)/肆李(6x^2)
=lim(x->0) [(x^2)/2]/搭则(6x^2)
=1/12