高中数学合集百度网盘下载
链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ
提取码:1234
简介:高中数学优质资料下载,包括:试顷携题试卷雀皮伏、课件、教材、视频、各大名师网握渗校合集。
牛顿-莱布尼兹公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。
牛顿-莱布尼茨公老和樱式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。牛顿棚庆在1666年写的《流数简论》中利用运动学描述了这一公式, 1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛侍丛顿-莱布尼茨公式。
如果函数 在区间 上连续,并且存在原函数 ,则
扩展资料:
牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。
牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。
牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。牛顿-莱布尼茨公式还可以推广到二重积分与曲线积分,从一维推广到多维。
参考资料:百度百科 牛顿-莱布尼茨公式
牛顿-莱布尼兹公式(山消Newton-leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。
牛顿-莱布尼茨公贺纳式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一禅唯没篇手稿中正式提出了这一公式。 因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
定义
弱化条件
微瞎好积分基本定理,喜欢纤埋的点击主页磨竖铅关注!
微积分基本定理,一般指的是,定积分计算陵激的牛顿-莱布尼兹公式,
由该公式可知,计算定积分,只要计算出被积函数的原函数,代入区间端点值相减,即可得出定积分值。而原函尺颂袜数的计算,与微分导数密樱滚切相关,所以称该公式为微积分基本定理