(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推导两角和的正弦

2024-11-14 23:44:21
推荐回答(1个)
回答(1):

解:(Ⅰ)①如图,在直角坐标系xOy内做单位圆O,
并作出角α、β与-β,使角α的始边为Ox,
交⊙O于点P1,终边交⊙O于P2;角β的始边为OP2
终边交⊙O于P3;角-β的始边为OP1,终边交⊙O于P4
则P1(1,0),P2(cosα,sinα)
P3(cos(α+β),sin(α+β)),
P4(cos(-β),sin(-β))
由P1P3=P2P4及两点间的距离公式,得
[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2
展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)
∴cos(α+β)=cosαcosβ-sinαsinβ;(4分)
②由①易得cos(

π
2
-α)=sinα,sin(
π
2
-α)=cosα
sin(α+β)=cos[
π
2
-(α+β)]=cos[(
π
2
-α)+(-β)]
=cos(
π
2
-α)cos(-β)-sin(
π
2
-α)sin(-β)
=sinαcosβ+cosαsinβ;(6分)
(Ⅱ)∵α∈(π,
2
),cosα=-
4
5

∴sinα=-
3
5

∵β∈(
π
2
,π),tanβ=-
1
3

∴cosβ=-
3
10
10
,sinβ=
10
10

cos(α+β)=cosαcosβ-sinαsinβ
=(-
4
5
)×(-
3
10
10
)-(-
3
5
)×