求1+1⼀2+1⼀3+.......1⼀n-lnn的极限,

2024-11-27 20:29:56
推荐回答(2个)
回答(1):

自然数的倒数组成的数列,称为调和数列.
人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时):
1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)
人们倾向于认为它没有一个简洁的求和公式.
但是,不是因为它是发散的,才没有求和公式.相反的,例如等差数列是发散的,公比的绝对值大于1的等比数列也是发散的,它们都有求和公式.
当n→∞时
1+1/2+1/3+1/4+

+1/n
这个级数是发散的。简单的说,结果为∞
------------------
用高中知识也是可以证明的,如下:
1/2≥1/2
1/3+1/4>1/2
1/5+1/6+1/7+1/8>1/2
……
1/[2^(k-1)+1]+1/[2^(k-1)+2]+…+1/2^k>[2^(k-1)](1/2^k)=1/2
对于任意一个正数a,把a分成有限个1/2
必然能够找到k,使得
1+1/2+1/3+1/4+

+1/2^k>a
所以n→∞时,1+1/2+1/3+1/4+

+1/n→∞

回答(2):

自然数的倒数组成的数列,称为调和数列.
人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时):
1+1/2+1/3+......+1/n≈lnn+c(c=0.57722......一个无理数,称作欧拉初始,专为调和级数所用)
人们倾向于认为它没有一个简洁的求和公式.
但是,不是因为它是发散的,才没有求和公式.相反的,例如等差数列是发散的,公比的绝对值大于1的等比数列也是发散的,它们都有求和公式.
当n→∞时
1+1/2+1/3+1/4+

+1/n
这个级数是发散的。简单的说,结果为∞
------------------
用高中知识也是可以证明的,如下:
1/2≥1/2
1/3+1/4>1/2
1/5+1/6+1/7+1/8>1/2
……
1/[2^(k-1)+1]+1/[2^(k-1)+2]+…+1/2^k>[2^(k-1)](1/2^k)=1/2
对于任意一个正数a,把a分成有限个1/2
必然能够找到k,使得
1+1/2+1/3+1/4+

+1/2^k>a
所以n→∞时,1+1/2+1/3+1/4+

+1/n→∞