已知函数f(x)=x+a눀⼀x,g(x)=x+lnx,其中a>0.(1)若函数y=f(x)在[1,

2024-11-08 06:38:50
推荐回答(1个)
回答(1):

(1)
f(x)>g(x)在[1,e]恒成立,即

x+a²/x>x+lnx在[1,e]恒成立
也即a²>xlnx恒成立 ①

由于x,和lnx在[1,e]都是单调增函数,因此xlnx在[1,e]也单调增。
即此区间上xlnx∈[1ln1,elne]即xlnx∈[0,e]
则根据①可知,a²>e,又因为a>0,所以
a的取值范围是(√e,+∞)

(2)
由题意可知,f(x)≥g(x)在[1,e]恒成立,即
x+a²/x≥x+lnx

即a²≥xlnx在[1,e]恒成立
而根据(1)的讨论,可知xlnx∈[0,e]
所以a²≥e,又因为a>0,
所以a的取值范围是[√e,+∞)