设函数f(x)=x+a⼀x+b(a>b>0),求f(x)的单调区间,并证明f(x)在其单调区间上的

2025-04-14 11:09:55
推荐回答(1个)
回答(1):

f(x) = (x+a)/(x+b), x不为-b.

x<-b时,f(x) = (x+a)/(x+b) = (x+b+a-b)/(x+b) = 1 + (a-b)/(x+b),
a-b>0, x+b<0. (a-b)/(x+b)单调递减,
因此,x<-b时,f(x) = 1 + (a-b)/(x+b)单调递减。

x>-b时,f(x) = (x+a)/(x+b) = (x+b+a-b)/(x+b) = 1 + (a-b)/(x+b).
a-b>0, x+b>0. (a-b)/(x+b)单调递减,
因此,x>-b时,f(x) = 1 + (a-b)/(x+b)单调递减。

综合,有,f(x)的单调区间为:
x<-b或x>-b时,f(x)单调递减。