1⼀(2+根号2)+1⼀(3根号2+2根号3)+1⼀(4根号3+3根号4)

2024-11-01 16:32:36
推荐回答(2个)
回答(1):

对于任意的正整数n,有
1/[(n+1)√n+n√(n+1)]
=1/{√n√(n+1)[√(n+1)+√n]}
=(√(n+1)-√n)/{√n√(n+1)[√(n+1)+√n][√(n+1)-√n]}
=(√(n+1)-√n)/{√n√(n+1)[(n+1)-n]}
=(√(n+1)-√n)/[√n√(n+1)]
=1/√n-1/√(n+1)

所以
1/(2+根号2)+1/(3根号2+2根号3)+1/(4根号3+3根号4)+……+1/(100根号99+99根号100)
=1-1/√2+1/√2-1/√3+1/√3-1/√4+……+1/√99-1/√100
=1-1/√100
=1-1/10
=9/10

回答(2):

解:∵1/((n+1)*根n+n*根(n+1))=((n+1)*根n-n*根(n+1))/[((n+1)*根n+n*根(n+1))*((n+1)*根n-n*根(n+1))]=1/根n-1/根(n+1)
∴1/(2+根2)+1/(3根2+2根3)+1/(4根3+3根4)+……+1/(100根99+99根100)=1-1/根2+1/根2-1/根3+1/根3-根4+……+1/根99-1/根100
=1-1/10
=9/10