已知X大于Y大于0,且XY=1,求X^2+Y^2⼀X-y的最小值?

2024-11-30 18:37:12
推荐回答(1个)
回答(1):

(x2+y2)/(x-y)=
(x2+y2-2xy+2xy)/(x-y)
因为xy=1,所以
=[(x-y)^2+2]/(x-y)
=(x-y)+2/(x-y)
因为x>y>0所以(x-y)>0
所以有不等式的定理知道
(x-y)+2/(x-y)>=2根号下[(x-y)*2/(x-y)]=2根号2
而此时(x-y)^2=2
符合上面的条件
所以(x2+y2)/(x-y)的最小值为2根号2