sin4π⼀5的三角函数值

2024-11-22 14:05:10
推荐回答(2个)
回答(1):

sin(4π/5)=sin(π-4π/5)=sin(π/5)= 0.58

回答(2):

由于[-π/2,π/2]是函数y=sinx的猛孝一个单调增区间,[π/2,3π/2]为函数y=sinx的一个单调减区间,可以把上面几个函数化为一个区间内的函数再比较其大小
sin(4π/5)=sin(π-4π/5)=sin(π/5)
-cos(5π/4)=-sin(π/2-5π/4)=-sin(-3π/4)=sin(3π/4)=sin(π-3π/4)=sin(π/4)
sin(32π/5)=sin(6π+2π/5)=sin(2π/5)
cos(5π/12)=sin(π/2-5π/12)=sin(π/12)
因为-π/2<π/12<π/5<π/4<2π/5<π/2 (即—30π/60<5π/60<12π/60<15π/60<24π/60<30π/60)
[-π/2,π/2]是函数y=sinx的一个单调增区间,所以sin(π/12)即它们从小到大排枝兄稿列为cos(5π/12),sin(4π/5),-cos(5π/4),sin(32π/5)
请采纳。