按照下列从小到大的区间[-π/2→π/2]、[0→Rcosθ]算出来的答案是对的,为什么不是区间从[π/2 -> -π/2][Rcosθ→0]呢,我按这个区间算出来答案是(R³/3)[4/3- π ]书上的区间都是从大到小的啊。∫∫ √(R²-x²-y²) dxdy=∫∫ r√(R²-r²) drdθ=∫[-π/2→π/2] dθ∫[0→Rcosθ] r√(R²-r²) dr=(1/2)∫[-π/2→π/2] dθ∫[0→Rcosθ] √(R²-r²) d(r²)=-(1/2)(2/3)∫[-π/2→π/2] (R²-r²)^(3/2) |[0→Rcosθ] dθ=(1/3)∫[-π/2→π/2] (R³-R³|sinθ|³) dθ=(2R³/3)∫[0→π/2] (1-sin³θ) dθ=(2R³/3)[∫[0→π/2] 1 dθ - ∫[0→π/2] sin³θ dθ]=(2R³/3)[π/2 + ∫[0→π/2] sin²θ d(cosθ)]=(2R³/3)[π/2 + ∫[0→π/2] (1-cos²θ) d(cosθ)]=(2R³/3)[π/2 + cosθ - (1/3)cos³θ] |[0→π/2]=(2R³/3)[π/2 -1 + 1/3]=(2R³/3)[π/2 - 2/3]=(R³/3)[π - 4/3]
区间是从小到大的啊,不要随意更换,乱换最后计算肯定会算错的。