1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的.
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成.如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时.......两人如此交替工作.那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478.那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍.如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加.那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每加工5个零件中有4个是圆形的.这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
小学数学应用题综合训练(03)
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0.4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料.甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5.两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班.又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米.乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米.容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米.容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送.已知汽车每次往返需要1小时,实际上汽车每次多装了1吨,那么可提前几小时完成.
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米.去时用了4天,回来时用了3天,问学校距离百花山多少千米?
小学数学应用题综合训练(04)
31. 某地收取电费的标准是:每月用电量不超过50度,每度收5角;如果超出50度,超出部分按每度8角收费.每月甲用户比乙用户多交3元3角电费,这个月甲、乙各用了多少度电?
32. 王师傅计划用2小时加工一批零件,当还剩160个零件时,机器出现故障,效率比原来降低1/5,结果比原计划推迟20分钟完成任务,这批零件有多少个?
33. 妈妈给了红红一些钱去买贺年卡,有甲、乙、丙三种贺年卡,甲种卡每张1.20元.用这些钱买甲种卡要比买乙种卡多8张,买乙种卡要比买丙种卡多买6张.妈妈给了红红多少钱?乙种卡每张多少钱?
34. 一位老人有五个儿子和三间房子,临终前立下遗嘱,将三间房子分给三个儿子各一间.作为补偿,分到房子的三个儿子每人拿出1200元,平分给没分到房子的两个儿子.大家都说这样的分配公平合理,那么每间房子的价值是多少元?
35. 小明和小燕的画册都不足20本,如果小明给小燕A本,则小明的画册就是小燕的2倍;如果小燕给小明A本,则小明的画册就是小燕的3倍.原来小明和小燕各有多少本画册?
36. 有红、黄、白三种球共160个.如果取出红球的1/3,黄球的1/4,白球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,白球的1/3,则剩116个,问(1)原有黄球几个?(2)原有红球、白球各几个?
37. 爸爸、哥哥、妹妹三人现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三人的年龄各是多少岁?
38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,乙从B地出发去送另一封信.乙出发后10分钟,丙发现甲乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间?
39. 甲、乙两个车间共有94个工人,每天共加工1998竹椅.由于设备和技术的不同,甲车间平均每个工人每天只能生产15把竹椅,而乙车间平均每个工人每天可以生产43把竹椅.甲车间每天竹椅产量比乙车间多几把?
40. 甲放学回家需走10分钟,乙放学回家需走14分钟.已知乙回家的路程比甲回家的路程多1/6,甲每分钟比乙多走12米,那么乙回家的路程是几米?
小学数学应用题综合训练(05)
41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提高到原来的2.5倍,照这样计算,每天的利润比原来增加几元?
42. 甲、乙两列火车的速度比是5:4.乙车先发,从B站开往A站,当走到离B站72千米的地方时,甲车从A站发车往B站,两列火车相遇的地方离A,B两站距离的比是3:4,那么A,B两站之间的距离为多少千米?
43. 大、小猴子共35只,它们一起去采摘水蜜桃.猴王不在的时候,一只大猴子一小时可采摘15千克,一只小猴子一小时可采摘11千克.猴王在场监督的时候,每只猴子不论大小每小时都可以采摘12千克.一天,采摘了8小时,其中只有第一小时和最后一小时有猴王在场监督,结果共采摘4400千克水蜜桃.在这个猴群中,共有小猴子几只?
44. 某次数学竞赛设一、二等奖.已知(1)甲、乙两校获奖的人数比为6:5.(2)甲、乙来年感校获二等奖的人数总和占两校获奖人数总和的60%.(3)甲、乙两校获二等奖的人数之比为5:6.问甲校获二等奖的人数占该校获奖总人数的百分数是几?
45. 已知小明与小强步行的速度比是2:3,小强与小刚步行的速度比是4:5.已知小刚10分钟比小明多走420米,那么小明在20分钟里比小强少走几米?
46. 加工一批零件,原计划每天加工15个,若干天可以完成.当完成加工任务的3/5时,采用新技术,效率提高20%.结果,完成任务的时间提前10天,这批零件共有几个?
47. 甲、乙二人在400米的圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为8米/秒,乙的速度为6米/秒,当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距离终点多少米?
48. 小明从家去学校,如果他每小时比原来多走1.5千米,他走这段路只需原来时间的4/5;如果他每小时比原来少走1.5千米,那么他走这段路的时间就比原来时间多几分几之?
49. 甲、乙、丙、丁现在的年龄和是64岁.甲21岁时,乙17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是几岁?
50. 加工一批零件,原计划每天加工30个.当加工完1/3时,由于改进了技术,工作效率提高了10%,结果提前了4天完成任务.问这批零件共有几个?
小学数学应用题综合训练(06)
51. 自动扶梯以均匀的速度向上行驶,一男孩与一女孩同时从自动扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27级到达扶梯的顶部,而女孩走了18级到达顶部.问扶梯露在外面的部分有多少级?
52. 两堆苹果一样重,第一堆卖出2/3,第二堆卖出50千克,如果第一堆剩下的苹果比第二堆剩下的苹果少,那么两堆剩下的苹果至少有多少千克?
53. 甲、乙两车同时从A地出发,不停的往返行驶于A、B两地之间.已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都杂途中C地,甲车的速度是乙车的几倍?
54. 一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行8千米,因此第二小时比第一小时多行6千米.求甲、乙两地的距离.
55. 甲、乙两车分别从A、B两地出发,并在A,B两地间不断往返行驶.已知甲车的速度是15千米/小时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米.求A、B两地的距离.
56. 某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒.如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
57. 甲、乙两个圆柱体容器,底面积比为5:3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注入同样多的水,使得两个容器中的水深相等.这时水深多少厘米?
58. A、B两地相距207千米,甲、乙两车8:00同时从A地出发到B地,速度分别为60千米/小时,54千米/小时,丙车8:30从B地出发到A地,速度为48千米/小时.丙车与甲、乙两车距离相等时是几点几分?
59. 一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
60. 有一长方形,它的长与宽的比是5:2,对角线长29厘米,求这个长方形的面积.
小学数学应用题综合训练(07)
61. 有一个果园,去年结果的果树比不结果的果树的2倍还多60棵,今年又有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园里共有多少棵果树?
62. 小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地.48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明.如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
63. 同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
64. 一艘轮船在两个港口间航行,水速为6千米/小时,顺水航行需要4小时,逆水航行需要7小时,求两个港口之间的距离.
65. 有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发10分钟,出发后60分钟追上丙,问甲出发后几分钟追上乙?
66. 甲、乙合作完成一项工作,由于配合的好,甲的工作效率比单独做时提高1/10,乙的工作效率比单独做时提高1/5,甲、乙合作6小时完成了这项工作,如果甲单独做需要11小时,那么乙单独做需要几小时?
67. A、B、C、D、E五名学生站成一横排,他们的手中共拿着20面小旗.现知道,站在C右边的学生共拿着11面小旗,站在B左边的学生共拿着10面小旗,站在D左边的学生共拿着8面小旗,站在E左边的学生共拿着16面小旗.五名学生从左至右依次是谁?各拿几面小旗?
68. 小明在360米长的环行的跑道上跑了一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,问他后一半路程用了多少时间?
69. 小英和小明为了测量飞驶而过的火车的长度和速度,他们拿了两块秒表,小英用一块表记下火车从他面前通过所花的时间是15秒,小明用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60米,求火车的全长和速度.
70. 小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
小学数学应用题综合训练(08)
71. 数学练习共举行了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?
72. 一个整数除以2余1,用所得的商除以5余4,再用所得的商除以6余1.用这个整数除以60,余数是多少?
73. 少先队员在校园里栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,则余2棵;如果每人栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?
74. 某人开汽车从A城到B城要行200千米,开始时他以56千米/小时的速度行驶,但途中因汽车故障停车修理用去半小时,为了按时到达,他必须把速度增加14千米/小时,跑完以后的路程,他修车的地方距离A 城多少千米?
75. 甲、乙两人分别从A、B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回,已知两人第二次相遇的地点距离第一次相遇的地点是3000米,求A、B两地的距离.
76. 一条船往返于甲、乙两港之间,已知船在静水中的速度为9千米/小时,平时逆行与顺行所用时间的比为2:1.一天因下雨,水流速度为原来的2倍,这条船往返共用10小时,问甲、乙两港相距多少千米?
77. 某学校入学考试,确定了录取分数线,报考的学生中,只有1/3被录取,录取者平均分比录取分数线高6分,没有被录取的同学其平均分比录取分数线低15分,所有考生的平均分是80分,问录取分数线是多少分?
78. 一群学生搬砖,如果有12人每人各搬7块,其余的每人搬5块,那么最后余下148块;如果有30人每人各搬8块,其余的每人搬7块,那么最后余下20块.问学生共有多少人?砖有多少块?
79. 甲、乙两车分别从A、B两地同时相向而行,已知甲车速度与乙车速度之比为4:3,C地在A、B之间,甲、乙两车到达C地的时间分别是上午8点和下午3点,问甲、乙两车相遇是什么时间?
80. 一次棋赛,记分方法是,胜者得2分,负者得0分,和棋两人各得1分,每位选手都与其他选手各对局一次,现知道选手中男生是女生的10倍,但其总得分只为女生得分的4.5倍,问共有几名女生参赛?女生共得几分?
小学数学应用题综合训练(09)
81. 有若干个自然数,它们的算术平均数是10,如果从这些数中去掉最大的一个,则余下的算术平均数为9;如果去掉最小的一个,则余下的算术平均数为11,这些数最多有多少个?这些数中最大的数最大值是几?
82. 某班有少先队员35人,这个班有男生23人,这个班女生少先队员比男生非少先队员多几人?
83. 小东计划到周口店参观猿人遗址.如果他坐汽车以40千米/小时的速度行驶,那么比骑车去早到3小时,如果他以8千米/小时的速度步行去,那么比骑车晚到5小时,小东的出发点到周口店有多少千米?
84. 甲、乙两船在相距90千米的河上航行,如果相向而行,3小时相遇,如果同向而行则15小时甲船追上乙船.求在静水中甲、乙两船的速度.
85. 二年级两个班共有学生90人,其中少先队员有71人,一班少先队员占本班人数的75%,二班少先队员占本班人数的5/6.一班少先队员人数比二班少先队员人数多几人?
86. 一个容器中已注满水,有大、中、小三个球.第一次把小球沉入水中,第二次把小球取出,把中球沉入水中,第三次把中球取出,把小球和大球一起沉入水中,现知道每次从容器中溢出水量的情况是:第一次是第二次的1/2,第三次是第二次的1.5倍.求三个球的体积之比.
87. 某人翻越一座山用了2小时,返回用了2.5小时,他上山的速度是3000米/小时,下山的速度是4500米/小时.问翻越这座山要走多少米?
88. 钢筋原材料每根长7.3米,每套钢筋架子用长2.4米、2.1米和1.5米的钢筋各一段.现需要绑好钢筋架子100套,至少要用去原材料多少根?
89. 有一块铜锌合金,其中铜和锌的比2:3.现知道再加入6克锌,熔化后共得新合金36克,新合金中铜和锌的比是多少?
90. 小明通常总是步行上学,有一天他想锻炼身体,前1/3路程快跑,速度是步行速度的4倍,后一段的路程慢跑,速度是步行速度的2倍.这样小明比平时早35分到校,小明步行上学需要多少分钟?
小学数学应用题综合训练(10)
91. 甲、乙、丙三人,甲的年龄比乙的年龄的2倍还大3岁,乙的年龄比丙的年龄的2倍小2岁,三个人的年龄之和是109岁,分别求出甲、乙、丙的年龄.
92. 快车以60千米/小时的速度从甲站向乙站开出,1.5小时后,慢车以40千米/小时的速度从乙站行甲站开出,.两车相遇时,相遇点离两站的中点70千米.甲、乙两站相距多少千米?
93. 甲、乙两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是乙车与学校距离的3倍,8:39分甲车与学校的距离是乙车与学校距离的2倍,求甲车离开学校的时间.
94. 有一个工作小组,当每个工人在各自的工作岗位上工作时,7小时可生产一批零件,如果交换工人甲、乙的岗位,其他人不变,那么可提前1小时,完成这批零件,如果交换工人丙、丁的岗位,其他人不变,也可提前1小时,问如果同时交换甲与乙、丙与丁的岗位,其他人不变,那么完成这批零件需多长的时间.
95. 用10块长7厘米、宽5厘米、高3厘米的长方体积木,拼成一个长方体,这个长方体的表面积最小是多少?
96. 公圆只售两种门票:个人票每张5元,10人一张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45人逛公园,按以上规定买票,最少应付多少钱?(2)乙单位208人逛公园,按以上的规定买票,最少应付多少钱?
97. 甲、乙、丙三人,参加一次考试,共得260分,已知甲得分的1/3,乙得分的1/4与丙得分的一半减去22分都相等,那么丙得分多少?
98. 一项工程,甲、、乙两人合作4天后,再由乙单独做5天完成,已知甲比乙每天多完成这项工程的1/30.甲、乙单独做这项工程各需要几天?
99. 有长短两支蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘米,将它们同时点燃一段时间后,长蜡烛同短蜡烛点燃前一样长,这时短蜡烛的长度又恰好是长蜡烛的2/3.点燃前长蜡烛有多长?
100. 一批苹果平均分装在20个筐中,如果每筐多装1/9,可省下几只筐?
小学数学应用题综合训练(11)
101. 小明买了1支钢笔,所用的钱比所带的总钱数的一半多0.5元;买了1支圆珠笔,所用的钱比买钢笔后余下的钱的一半少0.5元;又买了2.8元的本子,最后剩下0.8元.小明带了多少元钱?
102. 儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?
103. 在一条长12米的电线上,黄甲虫在8:20从右端以每分钟15厘米的速度向左端爬去;8:30红甲虫和蓝甲虫从左端分别以每分钟13厘米和11厘米的速度向右端爬去,红甲虫在什么时刻恰好在蓝甲虫和黄甲虫的中间?
104. 一支解放军部队从驻地乘车赶往某地抗洪抢险,如果将车速比原来提高1/9,就可比预定的时间20分钟赶到;如果先按原速度行驶72千米,再将车速比原来提高1/3,就可比预定的时间提前30分钟赶到.这支解放军部队的行程是多少千米?
105. 一只船从甲码头到乙码头往返一次共用4小时,回来时顺水比去时每小时多行12千米.因此后2小时比前2小时多行18千米,那么甲、乙两个码头距离是几千米?
106. 甲、乙两个班的学生人数的比是5:4,如果从乙班转走9名学生,那么甲班就比乙班人数多2/3.这时乙班有多少人?
107. 甲、乙两堆煤共重78吨,从甲堆运出25%到乙堆,则乙堆与甲堆的重量比是8:5.原来各有多少吨煤?
108. 一件工作,甲单独做要20天完成,乙单独做要12天完成,如果这件工作先由甲队做若干天,再由乙队做完,两个队共用了14天,甲队做了几天?
109. 某电机厂计划生产一批电机,开始每天生产50台,生产了计划的1/5后,由于技术改造使工作效率提高60%,这样完成任务比计划提前了3天,生产这批电机的任务是多少台?
110. 两个数相除商9余4,如果被除数、除数都扩大到原来的3倍.那么被除数、除数、商、余数之和等于2583.原来的被除数和除数各是多少?
小学数学应用题综合训练(12)
111. 在一条笔直的公路上,甲、乙两地相距600米,A每小时走4千米,B每小时走5千米.上午8时,他们从甲、乙两地同时相向出发,1分钟后,他们都调头向相反的方向走,就是依次按照1,3,5,7……连续奇数分钟的时候调头走路.他们在几时几分相遇?
112. 有两个工程队完成一项工程,甲队每工作6天后休息1天,单独做需要76天完工;乙队每工作5天后休息2天,单独做需要89天完工,照这样计算,两队合作,从1998年11月29日开始动工,到1999年几月几日才能完工?
113. 一次数学竞赛,小王做对的题占题目总数的2/3,小李做错了5题,两人都做错的题数占题目总数的1/4,小王做对了几道题?
114. 有100枚硬币(1分、2分、5分),把其中2分硬币全换成等值的5分硬币,硬币总数变成79个,然后又把其中1分硬币全换成等值的5分硬币,硬币总数变成63个,那么原有2分及5分硬币共值几分?
115. 甲、乙两物体沿环形跑道相对运动,从相距150米(环形跑道上小弧的长)的两点出发,如果沿小弧运动,甲和乙第10秒相遇,如果沿大弧运动,经过14秒相遇.已知当甲跑完环形跑道一圈时,乙只跑90米.求环形跑道的周长及甲、乙两物体运动的速度?
学数学毕业模拟试卷
姓名 班级 学号 得分
一、填空。(18分)
1、一个数亿位上是最大的一位数、千万位上是6,万位上是最小的合数,千位上是最小的质数,其余数位上是0,这个数是( ),四舍五入到亿位记作( )亿。
2、把6 :1.8化成最简整数比是( ),比值是( )。
3、3 小时=( )分 8.06立方米=( )升
4、一堆化肥有6吨,按1:3:4分给甲、乙、内三个生产队,甲队分得这堆化肥的(——),乙队分得( )吨。
5、甲乙两地相距35千米,画在一幅地图上的长度是7厘米,这幅地图的比例尺是( )。
6、24和54的最小公倍数是( ),最大公约数是( )。
7、六年级同学开展植树活动,成活80棵,5棵没有成活。成活率最( )。
8、一根绳子的长度等于它本身长度的 加上 米,这绳子长( )米。
9、正方体棱长的总和是48厘米,它的表面积是( )平方厘米,体积是( )立方厘米。
10、一件工作,甲独做2天可完成这件工作的 。照这样计算,剩下的工作还需( )天完成。
11、一个圆柱体,如果把它的高截短3厘米,表面积就减少94.2平方厘米。它的底面半径是( )厘米,体积减少了( )立方厘米。
二、判断。(对的打“√”,错的打“×”)(4分)
1、平行四边形的对称抽有两条。( )
2、如果x× =y× ,那么x:y= : 。( )
3、甲数能被乙数整除,乙数一定是甲乙两数的最大公约数。( )
4、工作时间一定,制造每个零件的时间和零件个数成正比例。( )
三、选择。(把正确答案的序号填在括号里)(3分)
1、3.496保留两位小数约是( )。
①3.49 ②4.00 ③3.50
2、打一份稿件,甲用5分钟,乙用8分钟,甲乙两人工作效率的最简比是( )。 ①5:8 ②8:5 ③1/3 : 1/8
3、下列分数中不能化有限小数的是( )。
① ② ③ ④
四、计算。(10+9+15+6=40分)
1、直接写出得数。
5.4+8= 9÷ 3 ×18=
2、解方程。
①12 -4x=2 ②38:x=4.75:1 ③1/3 x+5/6 x=1.4
3、用递等式计算。
①308×16-14874÷37 ②(10/3 +3/4 -21/8 )×1
③3.5÷5/8 ×5/15 ④0.8×2.7+7.3÷15/4
⑤9.8÷[28×(1-1/7 )+27/5 ]
4、列式计算。
①一个数的 加上2.8,等于12.8,求这个数。
②80的12%加上1.25除 的商,和是多少?
五、下面是红旗小学六年级男、女生人数。(3+1+1=5)
红旗小学六年级(1)男26人、女生人数?人.
红旗小学六年级(2)男18人、女生人数25人.
红旗小学六年级(3)男24人、女生人数25人.
1、已知六(1)班的人数是49人,请完成统计表和统计图。
2、男生总人数比女生少( )%。
3、六年级三个班平均每个班( )人。
六、应用题。(5×6=30)
1、一列货车和一列客车同时从相距504千米的两地相对开出,4.5小时相遇。客车每小时行64千米,货车每小时行多少千米?
2、某洗衣机厂五月份计划生产洗衣机504台,实际上半月完成了5/9,下半月完成了2/3,这个月实际生产洗衣机多少台?
3、一项工程,甲单独做 8天完成,乙单独做12天完成。现在甲乙合做3天后,剩下的由甲独做,还需几天完成?
4、果园里的桃树比杏树多40棵,杏树的棵数是桃树的80%,桃树有多少棵?
5、一个圆锥形沙堆,底面积是3.6平方米,高1.2米。把这堆沙装在长2米、宽l.5米的沙坑里,可以装多高?
6、某校参加数学竞赛的男生与女生的人数比是6:5,后来又增加了5名女生,这时女生人数是男生人数的8/9。原来参加数学竞赛的女生有多少人?
小学数学毕业模拟试卷6
一、 判断题(1-3每题 1分, 4-5每题 2分, 共 7分)
1. 第一个圆的周长一定等于第二个圆的周长. ( )
2. 互质的两个数一定都是质数. ( )
3. 圆锥的体积等于和它等底等高的圆柱体积的三分之一. ( )
4.
A、a一定等于b与c的积. ( )
B、c一定是a的约数 ( )
C、a一定是b和c的最小公倍数. ( )
D、把a分解质因数一定是a=b×c. ( )
5. 验算反比例应用题时,只要把得数代入所列方程,方程两边相等,说明本题解答正确.( )
二、 填空题(1-5每题 1分, 6-8每题 2分, 共 11分)
1. 表示两个比( )的式子叫做比例.
2. 两个数的最大公约数必须是这两个数的( )的质因数的乘积.
3.
4. 4千米60米=( )千米
5. 用字母a,b,c 表示乘法结合律应写成( ).
6.
7. 把一个长、宽、高分别是6厘米、5厘米、4厘米的长方体截成两个长方体后,这两个长方体的表面积之和最大是( ).
8. 一个最简分数的分子扩大5倍,分母缩小4倍后,分子是最小的质数,分母是小于10的最大合数,原来这个最简分数是( ).
三、 多选题( 2分 )
A.是一个数 B.是指4与5相除
C.是一个比值 D.表示4与5的关系
四、 口算题( 5分 )
五、 简算题(每道小题 3分 共 6分 )
1.
2. 0.19+7.6+0.81+2.4
六、 计算题(每道小题 4分 共 24分 )
1.
2.
3. 4920÷2417×12
4.
5.
6.
七、 文字叙述题(每道小题 4分 共 8分 )
1. 从100里减去28.8除以4的商, 差是多少?
2.
八、 应用题(1-3每题 4分, 4-8每题 5分, 共 37分)
1. 机床厂去年生产机床2400台, 前年比去年少生产20%, 前年生产机床多少台?
2. 丰收小学要植树126棵,按132分配给四、五、六年级,五年级植树多少棵?
3. 果品店运来14筐梨,每筐35千克,还运来16筐苹果,每筐30千克,运来的梨比苹果多多少千克?
4. 甲池有水112立方米,乙池有水120立方米,每小时从甲池流出9立方米水到乙池,问几小时后乙池的水是甲池的3倍
5. 王师傅用同一台机床生产一批零件,前4天生产完1400个零件,剩下的任务两天生产完,这批零件共多少个?(用比例方法解答)
6. 有两块实验田,第一块地有3.5公顷,平均每公顷产小麦7200千克;第二块地有1.5公顷,共产小麦11250千克.这两块地平均每公顷产小麦多少千克?
7. 立交桥工地上午用去水泥72.5吨,下午运进的水泥重量正好与上午用剩下的水泥重量相等,这时工地上有水泥174.2吨.这一天下午运进的水泥重量是工地上原有水泥重量的百分之几?(百分数分子保留一位小数)
8. 两个城市相距380千米.一列客车和一列货车同时从两个城市相对开出,经过4小时后相遇.已知客车和货车速度的比是118.求客车每小时比货车每小时多走多少千米?
六年级数学毕业模拟检测试卷(4)
一、填空。(21%)
1.用三个“5”和二个“0”根据下面要求分别组成一个5位数:
(1)只读出一个零( ); (2)一个零也读不出来( )。
2.4千米60米=( )千米 1.25小时=( )分
3.36的约数共有( )个,选择其中四个组成比例,使两个比的比值等于 ,这
个比例式是( )。
4.一个数省略“万”后面的尾数是8万,这个数在( )至( )之间。
5.一个最简真分数,分子分母的积是24,这个真分数是( ),还可能是( )。
6.栽一种树苗,成活率为94%,为保证栽活470棵,至少要栽树苗( )棵。
7.一根长a米的绳子,如果用去 米,还剩下( )米;如果用去它的 ,
还剩( )米。
8.如果在比例尺是1:5000的图纸上,画一个边长为4厘米的正方形草坪图,这个草坪图的实际面积是( )平方米。
9.配制药水的浓度一定,水和药的用量成( )比例关系;步测一段距离,每步册平均长度与步数成( )比例关系。
10. 如左图所示,把底面周长18.84厘米、高10厘米的圆柱切成若干等分,拼成一个近似的长方体。这个长方体的底面积是( )平方厘米,表面积是( )平方厘米,体积是( )立方厘米。
11.自来水管的内直径是2厘米,水管内水的流速是每秒8厘米。一位同学去洗手,走时忘记关掉水龙头,5分钟浪费( )升水。
12.一个长方体的所有棱长之和为1.8米,长、宽、高的比是6:5:4。把这个长方体截成两个小长方体,表面积最多可以增加( )平方米。
二、选择。(5%)
1、把45米长的绳子平均分成4份,每份占全长的( )
A、15 B、14 C、15 米 D、14 米
2、用丝带捆扎一种礼品盒如下,结头处长25厘米,要捆扎这种礼品盒需准备( )分米的丝带比较合理。
A、10分米 B、21.5分米 C、23分米 D、30分米
3、如图,有一个无盖的正方休纸
盒,下底标有字母“M”,沿图 A B
中粗线将其剪开展成平面图形
想想会是( ) 。 C
4.六(1)班共有48名学生,期末评选一名学习标
兵,选举结果如右图,下面( )图能表示出这个结果。
A B C D
5.估算下面4个算式的计算结果,最大的是( )。
A.888×(1+ ) B.888×(1- ) C. 888÷(1+ ) D. 888÷(1- )
三、计算。(27%)
1.直接写出结果。(6%)
23 -12 = 4.5×102= 59 ×6= 270÷18= 5-0.25+0.75=
0.42-0.32= 2÷15 = 341-103= 13×(2+713 )= ( ):17 =17
10×10%= 23.9÷8≈ 7× ÷7× = 1÷ × =
2.怎样简便怎样算。(9%)
78 ÷5+78 ÷2 1.05×(3.8-0.8)÷6.3 920 ÷[12 ×(25 +45 )]
3.解方程(或比例)。(6%)
14 x -0.75=12 ÷ 1.27.5 = 0.4x
4.列式计算。(6%)
(1)一个数的 比它的 多60,求这个数。(2)18的 除以 的12倍,商是多少?
四、动手实践。(5%)
1.右图是一个长3厘米、宽2厘米的长方形。
(1)在长方形中画一条线段,把它分成一个
最大的等腰直角三角形和一个梯形。
(2)求出这个梯形的面积。
(3)以等腰直角三角形的一个直角边所在的直线为轴,将三角形高速旋转,可以形成( )形。算出旋转形成的这个图形的体积。
五、生活中的统计问题。(6%)
下表是新华小学六年级各班人数的统计表,请根据表中数据画出条形统计图。
六(1)班 六(2)班 六(3)班
男生 23 22 24
女生 22 25 26
根据数据画统计图回答问题。
(1)六( )班的人数最多,共有( )人。
(2)六(1)班人数相当于六(3)班的( )%。
(3)全年级平均每个班大约有学生( )人。
六、解决问题。(36%)
1.只列式(或方程)不计算。
2.工程队计划20天挖一条800米的水渠,实际16天就完成了任务。工程队的实际工作效率比计划提高了百分之几?
3.一辆快车和一辆慢车分别从南京和扬州两地同时相向而行,经过 小时在离中点3
千米处相遇。已知快车平均每小时行75千米,慢车平均每小时行多少千米?
4.上面是张大爷的一张储蓄存单,如到期要交纳20%的利息税,他的存款到期时实际可得多少元利息?
5.一个圆柱形玻璃杯,体积为1000立方厘米,现在水的高度和水上高度的比为1:1,放入一个圆锥后(圆锥完全浸没在水中),水的高度和水上高度的比为3:2,圆锥的体积是多少立方厘米?
6.甲、乙、丙三个工程队完成某项工程的天数和日工资如下表:
工程队 单独完成工程所用天数 每日总工资(万元)
甲 10 18
乙 15 12
丙 20 8
请你选择两个工程队合做这项工程,如果工期很紧,想尽快完工,应选择哪两个队合做?几天可以完工?完工后两队各得多少工资?
这里有
http://zhidao.baidu.com/question/60009033.html
还有这个一、复习引新
(一)下面各题中应该把哪个数量看作单位“1”?
1.花手绢的块数是白手绢的
2.白手绢块数的 正好是花手绢的块数.
3.花手绢的块数相当于白手绢的
4.白手绢块数的 倍相当于花手绢的块数
(二)教师提问
1.求一个数是另一个数的的几分之几用什么方法?
2.求一个数的几分之几是多少用什么方法?
3.已知一个数的几分之几是多少,求这个数,用什么方法?
(三)谈话导入
为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.
二、讲授新课
(一)教学例3
1.课件演示:分数除法应用题
2.比较.
(1)我们把这三道题放在一起比较,它们有什么相同点?
相同点:三个数量是相同的;需要找准单位“1”来分析.
(2)它们有什么区别呢?
不同点:已知和所求不同;解题方法不同.
3.小结:分数应用题主要有以上三类:
(1)求一个数是另一个数的几分之几.
(2)求一个数的几分之几是多少.
(3)已知一个数的几分之几是多少求这个数.
4.解答分数应用题的方法是什么?
抓住分率句;找准单位“1”;画图来分析;列式不必急.
三、巩固练习
(一)应用题
1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?
(1)学生独立分析列式
(2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.
2.学校有故事书36本,是科技书的 ,科技书有多少本?
3.学校有故事书36本,科技书是故事书的 ,科技书有多少本?
(二)补充条件并列式解答.
一条路长15千米,修了全长的 ,_________________?
(三)选择正确答案
1.修一条长240千米的公路,修了 ,修了多少千米?
2.修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?
240× 240÷ 150÷240 240÷150
(四)思考题
有一个两位数,十位上的数是个位上的数的 .十位上的数加上2,就和个位上的数相等.这个两位数是多少?
四、课堂小结
这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?
五、课后作业
(一)解答下面各题
1.六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?
2.六一班有学生45人,女生占 .女生有多少人?
3.六一班有男生25人,占全班的 .全班共有学生多少人?
(二)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?
六、板书设计
分数乘除法对比练习
1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
4÷12=
2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12× =4(只)
3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4÷ =12(只)
(1)在一次测验中,小明做对的题数是11道,错了4道,小明在这次测验中正确率是百分之几?
(2)大米加工厂用2000千克的稻谷加工成大米时,共碾出大米1600千克,求大米的出米率。
(3)林场春季植树,成活了24570棵,死了630棵,求成活率。
(4)家具厂有职工1250人,有一天缺勤15人,求出勤率。
(5)王师傅生产了一批零件,经检验合格的485只,不合格的有15只,求这一批新产品的合格率。
(6)用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率。
(7)六(1)班今天有48人来上课,有2人请事假,求这一天六(1)班的出勤率。
(8)六(1)班有50人,期中考试有5人不及格,求这个班的及格率。
(9)在一次射击练习中,小王命中的子弹是200发,没命中的是50发,命中率是多少?
1. 甲乙二人一起做数学题,如果甲再做4道和乙做的一样多,如果乙再做6道就是甲做的3倍,则甲做了多少道题?乙做了多少道题?
2. 游客在10时15分从码头划船逆流而上,要求在当天不迟于13点返回,以知水流速度为1.4千米/小时,船在静水的速度是3千米/小时.如果游客每划30分钟就休息15分钟而且只能在某次休息后往回划,那么他应该怎样安排才能使划离码头的距离最远?
3. 某次数学比赛,有两种评分方法:第一种答对一题得5分,不答得2分,答错不扣分;第二种先给40分,答对一题得3分,不答不得分,答错扣1分,某学生用两种方法评分均得81分,请问这次比赛共有多少道题?
4. 工程队要修一条水渠:如果每天多修8米,可提前4天完工;如果每天少修8米,则延后4天完工。请问这条水渠的长度?
一批粮食,运走全部的2/3(三分之二)少1吨.这时剩下的与原存的比是3:5.这批粮食原来有多少吨?
把两筐苹果分给甲、乙、丙三个班。甲班分得总量的2/5,剩下的按5:7分给乙、丙班。已知第二筐苹果重量是第一筐的9/10 ,且比第一筐少5千克。甲、乙、丙班分得的苹果分别是_________ 、_________ 、_________ 千克。
3. 设a,b使得6位数 a2000b 能被26整除。所有这样的6位数是________。
4. 把右面8×8的方格纸沿格线剪成4块形状、大小都相同的图形,使得每一块上都有罗、牛、山3个字。在图上用实线画出剪的结果。
5. 某容器中装有盐水。老师让小强再倒入5%的盐水800克,以配成20%的盐水。但小强却错误地倒入了800克水。老师发现后说,不要紧,你再将第三种盐水400克倒入容器,就可得到20%的盐水了。那么第三种盐水的浓度是_________ %。
6. 设6个口袋分别装有18,19,21,23,25,34个小球。小王取走了其中的3袋,小李取走了另外的2袋。若小王得到的球的个数恰好是小李得到的球数的2倍,则小王得到的球的个数是_________ 。
7. 一水池装有甲、乙两个水管。乙管每小时排水量是甲管的75%。先用乙管排水5小时后,改用甲管排水,结果比只用乙管提前1小时把水池中的水排空;如用乙管排水120吨后再改用甲管排水,则比只用乙管可提前2小时把水池中的水全部排空。那么水池原有水_________ 吨。
8. 右图中,四边形FMCG和FDHG都是梯形。D为BC的中点,BE= BA,MF= MA,△ABC的面积为1。那么梯形FDHG的面积是_________ 。
9. A,B,C三辆汽车以相同的速度同时从甲市开往乙市。开车后1小时A车出了事故,B和C两车照常前进。A车停了半小时后以原来速度的4/5 继续前进。B,C两车行至距离甲市200千米处B车出了事故,C车照常前进。B车停了半小时后也以原来速度的4/5 继续前进。结果到达乙市的时间C车比B车早1小时,B车比A车早1小时,甲、乙两市的距离为_________ 千米。
10.右图中共有_________ 个不同的三角形。
11.设四个不同的正整数构成的四数组中,最小的数与其余三 数的平均值之和为17,而最大的数与其余三数的平均值之和为29。在满足上述条件的四数组中,其最大数的最大值是_________ 。
12.一队和二队两个施工队的人数之比为3:4,每人工作效率之比为5:4。两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工9天。后来,由一队工人的2/3 与二队工人的1/3 组成新一队,其余的工人组成新二队。两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队比新一队早完工6天。那么前后两次工程的工作量之比是_________ 。
接力竞赛
1.甲、乙两班各有一个图书室,共有303本书。已知甲班图书的5/13 和乙班图书的 1/4合在一起是95本,那么甲班图书有_________ 。
2.设上题答案数的各位数字之和为a。 小宁家的钟和学校的钟走的都正常,但小宁家的钟拨快了,而学校的钟是准确的。小宁按家里的钟8点a分离家去学校,走到学校时学校的钟是7点50分;中午,他按学校的钟12点时离校回家,到家时家里的钟正好是12点34分。如果小宁上学和下学路上用的时间是相同的,那么小宁家的钟拨快了_________ 分钟。
3.设上题答案数为b。 如图所示,大正方形里有一个长为b/4 、宽为1的长方形。长方形的顶点都在正方形的边上,而且长方形的对称轴与正方形的对角线重合,那么,正方形的面积是_____。
4.设上题答案数的整数部分为c。 把1/c 表示为两个不同的分数单位之和,那么共有_________ 种不同的表示方法(仅求和次序不同视为一种)。
5.设上题答案数为d。 当王力的年龄像李同现在这么大时,刘强的年龄比王力和李同他们现在的年龄之和小d岁。当刘强像王力现在这么大时,王力的年龄是_________ 岁。
6.设上题答案数为e。 将用2,3,5,e组成的所有的四位数(数字允许重复)从小到大排成一列,这列数的第56个是_________ 。
7.设上题答案数的个位数字为f。 有10个整数排成一个圆形,将每一个整数换成与它相邻两数的平均值,所得的结果如图所示。那么图中数f所占位置的原数是_________ 。
8.设上题答案数的2倍为g。 有一组正整数,其中任意两数之差的g倍都不小于它们的乘积。那么这组正整数最多有_________ 个。
1. 有 28位小朋友排成一行 .从左边开始数第 10位是爱华,从右边开始数他是第几位?
2. 纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月 1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话?
3. 名工人 5小时加工零件 90件,要在 10小时完成 540个零件的加工,需要工人多少人?
4. 大于 100的整数中,被 13除后商与余数相同的数有多少个?
5. 四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?
6. 在 1998的约数(或因数)中有两位数,其中最大的是哪个数?
7. 英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?
8. 一个月最多有 5个星期日,在一年的 12个月中,有 5个星期日的月份最多有几个月?
9. 将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 .
□ +□□ =□□□
问算式中的三位数最大是什么数?
10. 有一个号码是六位数,前四位是 2857,后两位记不清,即
2857□□
但是我记得,它能被 11和 13整除,请你算出后两位数 .
11. 某学校有学生 518人,如果男生增加 4%,女生减少 3人,总人数就增加 8人,那么原来男生比女生多几人?
12. 陈敏要购物三次,为了使每次都不产生 10元以下的找赎, 5元、 2元、 1元的硬币最少总共要带几个?
(硬币只有 5元、 2元、 1元三种 .)
13. 右图是三个半圆构成的图形,其中小圆直径为 8,中圆直径为 12,
14.幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张?
15. 两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?
16.一本小说的页码,在印刷时必须用1989个铅字,在这一本书的页码中数字1出现多少次?
17.把23个数:3,33,333,…,33…3(23个3)相加,则所得的和的末四位数是多少?
18.将1、1、2、2、3、3、4、4这八个数字排成一个八位数,使得两个1之间有一个数字,两个2之间有二个数字,两个3之间有三个数字,两个4之间有四个数字,那么这样的八位数中最小的是?
19.从 1, 2, 3,…,2004, 2005这些自然数中,最多可以取几个数,才能使其中每两个数的差不等于4?
20.有一个电话号码是六位数,其中左边三个数字相同,右边三个数字是三个连续的自然数,六个数字之和恰好等于末尾的两位数,这个电话号码是多少?
21.若a为自然数,证明10│(a2005-a1949).
22.给出12个彼此不同的两位数,证明:由它们中一定可以选出两个数,它们的差是两个相同数字组成的两位数.
23.求被3除余2,被5除余3,被7除余5的最小三位数.
24.设2n+1是质数,证明:12,22,…,n2被2n+1除所得的余数各不相同.
25.试证不小于5的质数的平方与1的差必能被24整除.
26. 有甲乙两种糖水,甲含糖270克,含水30克,乙含糖400克,含水100克,现要得到浓度是82.5%的糖水100克,问每种应取多少克?
27. 一个容器里装有10升纯酒精,倒出1升后,用水加满,再倒出1升,用水加满,再倒出1升,用水加满,这时容器内的酒精溶液的浓度是?
28. 有若干千克4%的盐水,蒸发了一些水分后变成了10%的盐水,在加300克4%的盐水,混合后变成6.4%的盐水,问最初的盐水是多少千克?
29.已知盐水若干克,第一次加入一定量的水后,盐水浓度变为3%,第二次加入同样多的水后,盐水浓度变为2%。求第三次加入同样多的水后盐水的浓度。
30.有A、B、C三种盐水,按A与B的数量之比为2:1混合,得到浓度为13%的盐水;按A与B的数量之比为1:2混合,得到浓度为14%的盐水;按A、B、C的数量之比为1:1:3混合,得到浓度为10.2%的盐水,问盐水C的浓度是多少?
[ 答案 ]
1. 从右边开始数,他是第 19位 .
2. 4 月2 日上午9 时.
3.9名工人 .
4.有 5个 .
13× 7+7=98< 100,商数从 8开始 .但余数小于 13,最大是 12,有 13× 8+ 8= 112, 13× 9+ 9= 126, 13× 10+ 10=140, 13× 11+ 11=154, 13× 12+ 12= 168,共 5个数 .
5.至少有 11人 .
人数最多的房间至少有 3人,其余三个房间至少有 8人,总共至少有 11人 .
6.最大的两位约数是 74.
1998= 2× 3× 3× 3× 37
7.第四次最少要得 96分 .
88+( 90- 88)× 4=96(分)
8.最多有 5个月有 5个星期日 .
1月 1日是星期日,全年就有 53个星期日 .每月至少有 4个星期日, 53-4× 12=5,多出 5个星期日,在 5个月中 .
9.105.
和的前两位是 1和 0,两位数的十位是 9.因此加数的个位最大是 7和 8.
10.后两位数是 14.
285700÷( 11× 13) =1997余 129
余数 129再加 14就能被 143整除 .
11.男生比女生多 32人 .
男生 4%是 3+ 8=11(人),男生有 11÷ 4% =275(人),女生有 518-275=243(人), 275-243=32(人) .
12.最少 5元、 2元、 1元的硬币共 11个 .
购物 3次,必须备有 3个 5元、 3个 2元、 3个 1元 .为了应付 3次都是 4元,至少还要 2个硬币,例如 2元和 1元各一个,因此,总数 11个是不能少的 .准备 5元 3个, 2元 5个, 1元 3个,或者 5元 3个, 2元 4个, 1元 4个就能三次支付 1元至 9元任何钱数 .
14.A班每人能得 35张 .
设三班总人数是 1,则 B班人数是 6/15, C班人数是 6/14,因此 A班人数是:
15.第一个数报 6.
对方至少要报数 1,至多报数 8,不论对方报什么数,你总是可以做到两人所报数之和为 9.
123÷ 9= 13…… 6.
你第一次报数 6.以后,对方报数后,你再报数,使一轮中两人报的数和为 9,你就能在 13轮后达到 123.
16.4
17.甲26又2/3天,乙40天
18.21
19.14又1/3
20.10
21.甲、乙两地相距540千米,原来火车的速度为每小时90千米。
22.750
23.384
24.600
25.一班48人,二班42人
26.15
27.82
28.312
29.最少5个,最多7个
30.784
5. 1.某工厂原用长4米、宽1米的铁皮围成没有底和顶的正方体形状的产品存放处(底和顶用其它材料),恰好够存放一周产品。现在产品增加了27%,能否还用原来的铁皮围成存放处,装下现在一周的产品?
2、一项工程,甲单独做需要10天,乙单独做需要15天,如果两人合作,工作效率就要降低,甲只能完成原来的4/5,乙只能完成原来的9/10,现在要8天完成这项工程,两人合作的天数尽可能少,那么两人合作多少天?
3、一辆汽车以每小时40千米的速度从甲城开往乙城,返回时用原速度走了全程的3/4还多5千米,再改用每小时30千米的速度,走完余下的路程,因此返回甲城的时间比前往乙城的时间多用了10分钟,甲乙两城相距多远?
4、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨1.8元。当超过4吨时,超过部分每吨3.00元。某月甲、乙两户共交水费26.40元,用水量之比是5:3,请你算一算,甲、乙两户各应交水费多少元?
六年级有三个班,一班与二班的学生人数和比三班学生多3/4,二班与三班的学生人数和比六年级学生总数的2/3多3人。已知二班有学生43人,求六年级共有学生多少人?
这是一道比较复杂的分数应用题。
“一班与二班的学生人数和比三班学生多3/4”——
把三班学生看作4份,那么一、二班一共有4+3=7份,全年级共11分,三班占全年级人数的4/11,一、二班共占全年级的7/11。
“二班与三班的学生人数和比六年级学生总数的2/3多3人。已知二班有学生43人”————如果二班的人数减少3人,二、三两班共点全年级的2/3。
全年级人数:(43 - 3)÷(2/3 - 4/11)=132
1)在一次测验中,小明做对的题数是11道,错了4道,小明在这次测验中正确率是百分之几?
(2)大米加工厂用2000千克的稻谷加工成大米时,共碾出大米1600千克,求大米的出米率。
(3)林场春季植树,成活了24570棵,死了630棵,求成活率。
(4)家具厂有职工1250人,有一天缺勤15人,求出勤率。
(5)王师傅生产了一批零件,经检验合格的485只,不合格的有15只,求这一批新产品的合格率。
(6)用一批玉米种子做发芽试验,结果发芽的有192粒,没有发芽的有8粒,求这一批种子的发芽率。
(7)六(1)班今天有48人来上课,有2人请事假,求这一天六(1)班的出勤率。
(8)六(1)班有50人,期中考试有5人不及格,求这个班的及格率。
(9)在一次射击练习中,小王命中的子弹是200发,没命中的是50发,命中率是多少?
1、一个数亿位上是最大的一位数、千万位上是6,万位上是最小的合数,千位上是最小的质数,其余数位上是0,这个数是( ),四舍五入到亿位记作( )亿。
2、把6 :1.8化成最简整数比是( ),比值是( )。
3、3 小时=( )分 8.06立方米=( )升
4、一堆化肥有6吨,按1:3:4分给甲、乙、内三个生产队,甲队分得这堆化肥的(——),乙队分得( )吨。
5、甲乙两地相距35千米,画在一幅地图上的长度是7厘米,这幅地图的比例尺是( )。
6、24和54的最小公倍数是( ),最大公约数是( )。
7、六年级同学开展植树活动,成活80棵,5棵没有成活。成活率最( )。
8、一根绳子的长度等于它本身长度的 加上 米,这绳子长( )米。
9、正方体棱长的总和是48厘米,它的表面积是( )平方厘米,体积是( )立方厘米。
10、一件工作,甲独做2天可完成这件工作的 。照这样计算,剩下的工作还需( )天完成。
11、一个圆柱体,如果把它的高截短3厘米,表面积就减少94.2平方厘米。它的底面半径是( )厘米,体积减少了( )立方厘米。
二、判断。(对的打“√”,错的打“×”)(4分)
1、平行四边形的对称抽有两条。( )
2、如果x× =y× ,那么x:y= : 。( )
3、甲数能被乙数整除,乙数一定是甲乙两数的最大公约数。( )
4、工作时间一定,制造每个零件的时间和零件个数成正比例。( )
三、选择。(把正确答案的序号填在括号里)(3分)
1、3.496保留两位小数约是( )。
①3.49 ②4.00 ③3.50
2、打一份稿件,甲用5分钟,乙用8分钟,甲乙两人工作效率的最简比是( )。 ①5:8 ②8:5 ③1/3 : 1/8
3、下列分数中不能化有限小数的是( )。
① ② ③ ④
四、计算。(10+9+15+6=40分)
1、直接写出得数。
5.4+8= 9÷ 3 ×18=
2、解方程。
①12 -4x=2 ②38:x=4.75:1 ③1/3 x+5/6 x=1.4
3、用递等式计算。
①308×16-14874÷37 ②(10/3 +3/4 -21/8 )×1
③3.5÷5/8 ×5/15 ④0.8×2.7+7.3÷15/4
⑤9.8÷[28×(1-1/7 )+27/5 ]
4、列式计算。
①一个数的 加上2.8,等于12.8,求这个数。
②80的12%加上1.25除 的商,和是多少?
五、下面是红旗小学六年级男、女生人数。(3+1+1=5)
红旗小学六年级(1)男26人、女生人数?人.
红旗小学六年级(2)男18人、女生人数25人.
红旗小学六年级(3)男24人、女生人数25人.
1、已知六(1)班的人数是49人,请完成统计表和统计图。
2、男生总人数比女生少( )%。
3、六年级三个班平均每个班( )人。
六、应用题。(5×6=30)
1、一列货车和一列客车同时从相距504千米的两地相对开出,4.5小时相遇。客车每小时行64千米,货车每小时行多少千米?
2、某洗衣机厂五月份计划生产洗衣机504台,实际上半月完成了5/9,下半月完成了2/3,这个月实际生产洗衣机多少台?
3、一项工程,甲单独做 8天完成,乙单独做12天完成。现在甲乙合做3天后,剩下的由甲独做,还需几天完成?
4、果园里的桃树比杏树多40棵,杏树的棵数是桃树的80%,桃树有多少棵?
5、一个圆锥形沙堆,底面积是3.6平方米,高1.2米。把这堆沙装在长2米、宽l.5米的沙坑里,可以装多高?
6、某校参加数学竞赛的男生与女生的人数比是6:5,后来又增加了5名女生,这时女生人数是男生人数的8/9。原来参加数学竞赛的女生有多少人?
小学数学毕业模拟试卷6
一、 判断题(1-3每题 1分, 4-5每题 2分, 共 7分)
1. 第一个圆的周长一定等于第二个圆的周长. ( )
2. 互质的两个数一定都是质数. ( )
3. 圆锥的体积等于和它等底等高的圆柱体积的三分之一. ( )
4.
A、a一定等于b与c的积. ( )
B、c一定是a的约数 ( )
C、a一定是b和c的最小公倍数. ( )
D、把a分解质因数一定是a=b×c. ( )
5. 验算反比例应用题时,只要把得数代入所列方程,方程两边相等,说明本题解答正确.( )
二、 填空题(1-5每题 1分, 6-8每题 2分, 共 11分)
1. 表示两个比( )的式子叫做比例.
2. 两个数的最大公约数必须是这两个数的( )的质因数的乘积.
3.
4. 4千米60米=( )千米
5. 用字母a,b,c 表示乘法结合律应写成( ).
6.
7. 把一个长、宽、高分别是6厘米、5厘米、4厘米的长方体截成两个长方体后,这两个长方体的表面积之和最大是( ).
8. 一个最简分数的分子扩大5倍,分母缩小4倍后,分子是最小的质数,分母是小于10的最大合数,原来这个最简分数是( ).
三、 多选题( 2分 )
A.是一个数 B.是指4与5相除
C.是一个比值 D.表示4与5的关系
四、 口算题( 5分 )
五、 简算题(每道小题 3分 共 6分 )
1.
2. 0.19+7.6+0.81+2.4
六、 计算题(每道小题 4分 共 24分 )
1.
2.
3. 4920÷2417×12
4.
5.
6.
七、 文字叙述题(每道小题 4分 共 8分 )
1. 从100里减去28.8除以4的商, 差是多少?
2.
八、 应用题(1-3每题 4分, 4-8每题 5分, 共 37分)
1. 机床厂去年生产机床2400台, 前年比去年少生产20%, 前年生产机床多少台?
2. 丰收小学要植树126棵,按132分配给四、五、六年级,五年级植树多少棵?
3. 果品店运来14筐梨,每筐35千克,还运来16筐苹果,每筐30千克,运来的梨比苹果多多少千克?
4. 甲池有水112立方米,乙池有水120立方米,每小时从甲池流出9立方米水到乙池,问几小时后乙池的水是甲池的3倍
5. 王师傅用同一台机床生产一批零件,前4天生产完1400个零件,剩下的任务两天生产完,这批零件共多少个?(用比例方法解答)
6. 有两块实验田,第一块地有3.5公顷,平均每公顷产小麦7200千克;第二块地有1.5公顷,共产小麦11250千克.这两块地平均每公顷产小麦多少千克?
7. 立交桥工地上午用去水泥72.5吨,下午运进的水泥重量正好与上午用剩下的水泥重量相等,这时工地上有水泥174.2吨.这一天下午运进的水泥重量是工地上原有水泥重量的百分之几?(百分数分子保留一位小数)
8. 两个城市相距380千米.一列客车和一列货车同时从两个城市相对开出,经过4小时后相遇.已知客车和货车速度的比是118.求客车每小时比货车每小时多走多少千米?
六年级数学毕业模拟检测试卷(4)
一、填空。(21%)
1.用三个“5”和二个“0”根据下面要求分别组成一个5位数:
(1)只读出一个零( ); (2)一个零也读不出来( )。
2.4千米60米=( )千米 1.25小时=( )分
3.36的约数共有( )个,选择其中四个组成比例,使两个比的比值等于 ,这
个比例式是( )。
4.一个数省略“万”后面的尾数是8万,这个数在( )至( )之间。
5.一个最简真分数,分子分母的积是24,这个真分数是( ),还可能是( )。
6.栽一种树苗,成活率为94%,为保证栽活470棵,至少要栽树苗( )棵。
7.一根长a米的绳子,如果用去 米,还剩下( )米;如果用去它的 ,
还剩( )米。
8.如果在比例尺是1:5000的图纸上,画一个边长为4厘米的正方形草坪图,这个草坪图的实际面积是( )平方米。
9.配制药水的浓度一定,水和药的用量成( )比例关系;步测一段距离,每步册平均长度与步数成( )比例关系。
10. 如左图所示,把底面周长18.84厘米、高10厘米的圆柱切成若干等分,拼成一个近似的长方体。这个长方体的底面积是( )平方厘米,表面积是( )平方厘米,体积是( )立方厘米。
11.自来水管的内直径是2厘米,水管内水的流速是每秒8厘米。一位同学去洗手,走时忘记关掉水龙头,5分钟浪费( )升水。
12.一个长方体的所有棱长之和为1.8米,长、宽、高的比是6:5:4。把这个长方体截成两个小长方体,表面积最多可以增加( )平方米。
二、选择。(5%)
1、把45米长的绳子平均分成4份,每份占全长的( )
A、15 B、14 C、15 米 D、14 米
2、用丝带捆扎一种礼品盒如下,结头处长25厘米,要捆扎这种礼品盒需准备( )分米的丝带比较合理。
A、10分米 B、21.5分米 C、23分米 D、30分米
3、如图,有一个无盖的正方休纸
盒,下底标有字母“M”,沿图 A B
中粗线将其剪开展成平面图形
想想会是( ) 。 C
4.六(1)班共有48名学生,期末评选一名学习标
兵,选举结果如右图,下面( )图能表示出这个结果。
A B C D
5.估算下面4个算式的计算结果,最大的是( )。
A.888×(1+ ) B.888×(1- ) C. 888÷(1+ ) D. 888÷(1- )
三、计算。(27%)
1.直接写出结果。(6%)
23 -12 = 4.5×102= 59 ×6= 270÷18= 5-0.25+0.75=
0.42-0.32= 2÷15 = 341-103= 13×(2+713 )= ( ):17 =17
10×10%= 23.9÷8≈ 7× ÷7× = 1÷ × =
2.怎样简便怎样算。(9%)
78 ÷5+78 ÷2 1.05×(3.8-0.8)÷6.3 920 ÷[12 ×(25 +45 )]
3.解方程(或比例)。(6%)
14 x -0.75=12 ÷ 1.27.5 = 0.4x
4.列式计算。(6%)
(1)一个数的 比它的 多60,求这个数。(2)18的 除以 的12倍,商是多少?
四、动手实践。(5%)
1.右图是一个长3厘米、宽2厘米的长方形。
(1)在长方形中画一条线段,把它分成一个
最大的等腰直角三角形和一个梯形。
(2)求出这个梯形的面积。
(3)以等腰直角三角形的一个直角边所在的直线为轴,将三角形高速旋转,可以形成( )形。算出旋转形成的这个图形的体积。
五、生活中的统计问题。(6%)
下表是新华小学六年级各班人数的统计表,请根据表中数据画出条形统计图。
六(1)班 六(2)班 六(3)班
男生 23 22 24
女生 22 25 26
根据数据画统计图回答问题。
(1)六( )班的人数最多,共有( )人。
(2)六(1)班人数相当于六(3)班的( )%。
(3)全年级平均每个班大约有学生( )人。
六、解决问题。(36%)
1.只列式(或方程)不计算。
2.工程队计划20天挖一条800米的水渠,实际16天就完成了任务。工程队的实际工作效率比计划提高了百分之几?
3.一辆快车和一辆慢车分别从南京和扬州两地同时相向而行,经过 小时在离中点3
千米处相遇。已知快车平均每小时行75千米,慢车平均每小时行多少千米?
4.上面是张大爷的一张储蓄存单,如到期要交纳20%的利息税,他的存款到期时实际可得多少元利息?