1⼀(x-1)+1⼀(x-4)=1⼀(x-2)+1⼀(x-3)

解方程
2024-10-30 21:54:16
推荐回答(1个)
回答(1):

解: 1/(x-1)+1/(x-4)=1/(x-2)+1/(x-3)

(x-4+x-1)/(x-1)(x-4)=(x-3+x-2)/(x-2)(x-3)

(2x-5)/(x-1)(x-4)=(2x-5)/(x-2)(x-3)

因为(x-1)(x-4)=x^2-5x+4

(x-2)(x-3)=x^2-5x+6

所以 (x-1)(x-4)不等于(x-2)(x-3)

因此 只有2x-5=0

解得   x=5/2