均值不等式的常用公式?

谢谢了
2024-11-01 09:22:53
推荐回答(5个)
回答(1):

均值不等式的公式内容为Hn≤Gn≤An≤Qn。

拓展资料:

均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。

Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。简记为“调几算方”。

调和平均数:

几何平均数:

算术平均数:

平方平均数:

回答(2):

(1)对实数a,b,有a^2+b^2≥2ab(当且仅当a=b时取“=”号),a^2+b^2>0>-2ab
(2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0
(3)对负实数a,b,有a+b<0<2√(a*b)
(4)对实数a,b,有a(a-b)≥b(a-b)
(5)对非负数a,b,有a^2+b^2≥2ab≥0
(6)对非负数a,b,有a^2+b^2≥1/2*(a+b)^2≥ab
(7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2
(8)对非负数a,b,c,有a^2+b^2+c^2≥ab+bc+ac
(9)对非负数a,b,有a^2+ab+b^2≥3/4*(a+b)^

回答(3):

(1)对实数a,b,有a^2+b^2≥2ab (当且仅当a=b时取“=”号),a^2+b^2>0>-2ab
(2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0
(3)对负实数a,b,有a+b<0<2√(a*b)
(4)对实数a,b,有a(a-b)≥b(a-b)
(5)对非负数a,b,有a^2+b^2≥2ab≥0
(6)对非负数a,b,有a^2+b^2 ≥1/2*(a+b)^2≥ab
(7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2
(8)对非负数a,b,c,有a^2+b^2+c^2≥ab+bc+ac
(9)对非负数a,b,有a^2+ab+b^2≥3/4*(a+b)^

回答(4):

1、调和平均数:hn=n/(1/a1+1/a2+...+1/an)
  2、几何平均数:gn=(a1a2...an)^(1/n)=n次√(a1*a2*a3*...*an)
  3、算术平均数:an=(a1+a2+...+an)/n
  4、平方平均数:qn=√
[(a1^2+a2^2+...+an^2)/n]
  这四种平均数满足hn≤gn≤an≤qn
  a1、a2、…
、an∈r
+,当且仅当a1=a2=

=an时取“=”号
  均值不等式的一般形式:设函数d(r)=[(a1^r+a2^r+...an^r)/n]^(1/r)(当r不等于0时);
  (a1a2...an)^(1/n)(当r=0时)(即d(0)=(a1a2...an)^(1/n))
  则有:当r  注意到hn≤gn≤an≤qn仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)

回答(5):

(1)对实数a,b,有a^2+b^2≥2ab
(当且仅当a=b时取“=”号),a^2+b^2>0>-2ab
(2)对非负实数a,b,有a+b≥2√(a*b)≥0,即(a+b)/2≥√(a*b)≥0
(3)对负实数a,b,有a+b<0<2√(a*b)
(4)对实数a,b,有a(a-b)≥b(a-b)
(5)对非负数a,b,有a^2+b^2≥2ab≥0
(6)对非负数a,b,有a^2+b^2
≥1/2*(a+b)^2≥ab
(7)对非负数a,b,c,有a^2+b^2+c^2≥1/3*(a+b+c)^2
(8)对非负数a,b,c,有a^2+b^2+c^2≥ab+bc+ac
(9)对非负数a,b,有a^2+ab+b^2≥3/4*(a+b)^