已知sin(α+π⼀4)=4⼀5,且π⼀4<α<3π⼀4,求cosα的值,我们只学了两角差的余弦公式

2024-11-18 03:45:43
推荐回答(2个)
回答(1):

sin(α+π/4)=4/5, cos(α+π/4)=-3/5
cosα=cos[(α+π/4)-π/4]=cos(α+π/4)cosπ/4+sin(α+π/4)sinπ/4
=(√2/2)(-3/5)+(4/5)(√2/2)
= √2/10

回答(2):

∵sin(α+π/4)=4/5,且π/4<α<3π/4,
∴π/2<α+π/4<π
∴cos(α+π/4)=-√[1-sin²(α+π/4)]=-3/5
cosα=cos[(α+π/4)-π/4]
=cos(α+π/4)cosα+sin(α+π/4)sinα
=-3/5*√2/2+4/5*√2/2
=√2/10