求曲线y=x^2,x=y^2所围成的平面图形的面积及该图形绕x轴旋转所成的旋转体的体积

2024-12-05 14:11:21
推荐回答(1个)
回答(1):

解得两交点(0,0)和(1,1)再此范围内求y=x^0.5 与 y=x^2所夹面积

面积=∫(x^0.5-x^2)dx=2/3*x^1.5-1/3*^3 ; 积分下限是0,上限是1
=1/3

图形绕x轴旋转所成的旋转体的体积表达式为∫π*y^2dx

体积=∫π*(x^0.5)^2dx-∫π*(x^2)^2dx ; 积分下限是0,上限是1
=∫π*xdx-∫π*x^4dx
=π*(1/2*x^2-1/5*x^5)
=0.3π