解:如图,设AE、AF分别与BD交于点G、H,连接FE并延长交AB延长线于点P,分别过点D、F作DM⊥BC、FN⊥BC,分别交BC延长线于点M、N
∵S◇ABCD=BC●DM=120,BE=EC=BC/2
∴S△ABE=1/2BE●DM=1/4BC●DM=1/4S◇ABCD
同理:S△ADF=1/4S◇ABCD
∵DF=DC、DM⊥BC、FN⊥BC
∴FN=DM/2
∴S△ECF=1/2EC●FN=1/2(BC/2)●(DM/2)=1/8BC●DM=1/8S◇ABCD
∴S△AEF=S◇ABCD-S△ABE-S△ADF-S△ECF=3/8S◇ABCD
∵AB∥CD
∴∠PBE=∠FCE
∵∠BEP=∠CEF,BE=EC
∴△PBE≌△FCE
∴BP=CF=CD/2=AB/2
∴AB:AP=2:3
∵DF=FC,BE=EC
∴EF∥BD
∴AG:AE=AB:AP=2:3
∴S△AGH:S△AEF=4:9
∴S△AGH=4/9S△AEF=4/9*3/8S◇ABCD=1/6S◇ABCD
S△BEG=1/3S△ABE=1/12S◇ABCD
S△DHF=1/3S△ADF=1/12S◇ABCD
∴S△AGH+S△BEG+ S△DHF=1/6S◇ABCD+1/12S◇ABCD+1/12S◇ABCD=1/3S◇ABCD
∴S阴=2/3S◇ABCD=80