高等数学中dx dy的那个d意思是微分。
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不随Δx改变的常量,但A可以随x改变)。
而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
推导:
设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。 AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。
微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。得出: 当△x→0时,△y≈dy。 导数的记号为:(dy)/(dx)=f′(X)。
d是取无穷小量的意思,数学里边把它叫微分.
dy就是对y取无穷小量,dx就是对x取无穷小量.
dy/dx就是两个无穷小量的比值,也就是y关于x的变化率,也叫关于x的导函数,简称导数.
d:没有意义,可以理解为微分符号,后跟微分变量.如d(x^2)表示函数x^2的微分
dx:其一、可以理解为对于变量x的微分;其二、由于x通常作为自变量,因此也可以理解为对自变量x的微分(即对x轴的微分量)
d/dx:没有意义,可以理解为某个函数对于变量x的导数(也叫微商,即微分的商),后跟微分函数.如:(d/dx)(x^2)表示函数x^2对于变量x的导数
dy/dx:表示关于x的函数y对自变量x的导数,再不会引起混淆的前提下也可以表示为y
不能分开来理解,dx表示自变量x的微元,即变化幅度很小的一段,dy同理
d源于拉丁语differentia(差),d/dx是微分算子,大概意思是对关于x的函数求导吧