(√3)^4
=√(3^2)^2
=3^2
=9
开方(英文rooting),指求一个数的方根的运算,为乘方的逆运算。在中国古代也指求二次及高次方程(包括二项方程)的正根。
扩展资料:
一个数有多少个方根,这个问题既与数的所在范围有关,也与方根的次数有关。在实数范围内,任一实数的奇数次方根有且仅有一个,例如8的3次方根为2,-8的 3次方根为-2。
正实数的偶数次方根是两个互为相反数的数,例如16的4次方根为2和-2;负实数不存在偶数次方根;零的任何次方根都是零。在复数范围内,无论n是奇数或偶数,任一个非零的复数的n次方根都有n个。
常用平方根:
√0 = 0(表示根号0等于0,下同)
√1 = 1
√2 = 1.4142135623731
√3 = 1.73205080756888
√4 = 2
√5 = 2.23606797749979
√6 = 2.44948974278318
√7 = 2.64575131106459
√8 = 2.82842712474619
√9 = 3
√10 = 3.16227766016838
等于根号三相乘四次,两个根号三相乘等于三,所以根号三的四次方等于三的平方等于9
是二次根号吧
若是
则√3^4
=√(3^2)^2
=3^2
=9