求lim(x→0)[√(1+tanx)-√(1+sinx)]⼀[x*ln(1+x)-x^2]

2024-11-08 22:51:41
推荐回答(1个)
回答(1):

lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]
=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx)]
=lim(x→0)[tanx-sinx]/2[x*ln(1+x)-x^2]
洛必达法则
=lim(x→0)[sec^2x-cosx]/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)[(1-cos^3(x))/cos^2(x)]/2[x/(1+x)+ln(1+x)-2x]
=lim(x→0)(1-cos^3(x))/2[x/(1+x)+ln(1+x)-2x]
洛必达法则
=lim(x→0)[3cos^2(x)*sinx]/2[1/(1+x)^2+1/(1+x)-2]
=lim(x→0) 3x/2[(-2x^2-3x)/(1+x)^2]
=lim(x→0) 3x/2(-2x^2-3x)
=lim(x→0) 3x/(-4x^2-6x)
=-1/2