解答:证明:(Ⅰ)a3+b3-a2b-ab2=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)=(a-b)(a2-b2)=(a-b)2(a+b);
∵a>0,b>0,a≠b,∴(a-b)2(a+b)>0,即a3+b3-a2b-ab2>0;
∴a3+b3>a2b+ab2;
(Ⅱ)∵
?(
a2+b2+c2
3
)2=a+b+c 3
?
a2+b2+c2
3
=
a2+b2+c2+2ab+2bc+2ac 9
=2a2+2b2+2c2?2ab?2bc?2ac 9
=
a2?2ab+b2+b2?2bc+c2+a2?2ac+c2
9
,∵(a-b)2≥0,(b-c)2≥0,(a-c)2≥0,∴(a?b)2+(b?c)2+(a?c)2
9
≥0;(a?b)2+(b?c)2+(a?c)2
9
即:
≥(
a2+b2+c2
3
)2,∵a,b,c∈R+;a+b+c 3
∴
≥
a2+b2+c2
3
.a+b+c 3