数列{an}的前n项和Sn=2n+p(p∈R),数列{bn}满足bn=log2an,若{an}是等比数列,(1)求p的值及通项an;

2025-04-07 17:39:29
推荐回答(1个)
回答(1):

(1)∵sn=2n+p∴sn-1=2n-1+p(n≥2)
∴an=sn-sn-1=2n-2n-1=2n-1(n≥2)
∵数列an为等比数列
从而a1=20=21+p
∴p=-1
(2)由(1)知bn=log2an=n-1,bn-bn-1=1
当n为偶数时,Tn=(b12-(b22+(b32…+(-1)n-1(bn2
=(b1+b2)?(b1-b2)+(b3+b4)?(b3-b4)+…+(bn-1-bn)?(bn-1+bn

=-1×(b1+b2+b3+…+bn
=

n(1?n)
2

当n为奇数时,Tn=(b12-(b22+(b32…+(-1)n-1(bn2
=(b1+b2)?(b1-b2)+(b3+b4)?(b3-b4)+…+(bn-2+bn-1)?(bn-2-bn-1)+(bn2
=-1×(b1+b2+b3+…+bn-1)+(n-1)2
=
n(n?1)
2

综上可得,Tn=(?1)n?1
n(n?1)
2