高数隐函数求二阶导数

2024-12-02 14:41:35
推荐回答(1个)
回答(1):

  6(1)两端求微分,得
   (e^y)dy+ydx+xdy = 0,
解得
   y' = dy/dx = -y/[(e^y)+x],
于是
   y" = dy'/dx
    = (d/dx){-y/[(e^y)+x]}
    = -{y'[(e^y)+x]-y [(e^y)*y'+1]}/[(e^y)+x]²
    = ……