先序就是先遍历根,再遍历左子树,再遍历右子树。例如上图的先序遍历是:ABCDEFGHK
中序就是先遍历左子树,再遍历根,再右子树。例如上图的中序遍历是:BDCAEHGKF
后序就是先遍历左子树,再右子树,再根。例如上图的后序遍历是:DCBHKGFEA
二叉树的遍历分为以下三种:
先序遍历:遍历顺序规则为【根左右】
中序遍历:遍历顺序规则为【左根右】
后序遍历:遍历顺序规则为【左右根】
什么是【根左右】?就是先遍历根,再遍历左孩子,最后遍历右孩子;
举个例子,看下图(图从网上找的):
先序遍历:ABCDEFGHK
中序遍历:BDCAEHGKF
后序遍历:DCBHKGFEA
以中序遍历为例:
中序遍历的规则是【左根右】,我们从root节点A看起;
此时A是根节点,遍历A的左子树;
A的左子树存在,找到B,此时B看做根节点,遍历B的左子树;
B的左子树不存在,返回B,根据【左根右】的遍历规则,记录B,遍历B的右子树;
B的右子树存在,找到C,此时C看做根节点,遍历C的左子树;
C的左子树存在,找到D,由于D是叶子节点,无左子树,记录D,无右子树,返回C,根据【左根右】的遍历规则,记录C,遍历C的右子树;
C的右子树不存在,返回B,B的右子树遍历完,返回A;
至此,A的左子树遍历完毕,根据【左根右】的遍历规则,记录A,遍历A的右子树;
A的右子树存在,找到E,此时E看做根节点,遍历E的左子树;
E的左子树不存在,返回E,根据【左根右】的遍历规则,记录E,遍历E的右子树;
E的右子树存在,找到F,此时F看做根节点,遍历F的左子树;
F的左子树存在,找到G,此时G看做根节点,遍历G的左子树;
G的左子树存在,找到H,由于H是叶子节点,无左子树,记录H,无右子树,返回G,根据【左根右】的遍历规则,记录G,遍历G的右子树;
G的右子树存在,找到K,由于K是叶子节点,无左子树,记录K,无右子树,返回G,根据【左根右】的遍历规则,记录F,遍历F的右子树;
F的右子树不存在,返回F,E的右子树遍历完毕,返回A;
至此,A的右子树也遍历完毕;
最终我们得到上图的中序遍历为BDCAEHGKF,无非是按照遍历规则来的;
根据“中序遍历”的分析,相信先序遍历和后序遍历也可以轻松写出~
前序遍历:ABDECFG
中序遍历:DBEAFCG
后序遍历:DEBFGCA
前序遍历:1 2 4 3 5 7 6
中序遍历:2 4 1 5 7 3 6
后序遍历:4 2 7 5 6 3 1
做类似的题目,你可以先由两个遍历画出二叉树。通过形象的二叉树来写出另一个遍历,写的方法如上(递归)。画出二叉树的方法如下:
已知一棵二叉树的前序序列和中序序列,构造该二叉树的过程如下:
1. 根据前序序列的第一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在前序序列中确定左右子树的前序序列;
4. 由左子树的前序序列和中序序列建立左子树;
5. 由右子树的前序序列和中序序列建立右子树。
已知一棵二叉树的后序序列和中序序列,构造该二叉树的过程如下:
1. 根据后序序列的最后一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在后序序列中确定左右子树的后序序列;
4. 由左子树的后序序列和中序序列建立左子树;
5. 由右子树的后序序列和中序序列建立右子树。
前序遍历:ABDECFG
中序遍历:DBEAFCG
后序遍历:DEBFGCA
前序遍历:1 2 4 3 5 7 6
中序遍历:2 4 1 5 7 3 6
后序遍历:4 2 7 5 6 3 1
一、已知一棵二叉树的前序序列和中序序列,构造该二叉树的过程如下:
1. 根据前序序列的第一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在前序序列中确定左右子树的前序序列;
4. 由左子树的前序序列和中序序列建立左子树;
5. 由右子树的前序序列和中序序列建立右子树。
二、已知一棵二叉树的后序序列和中序序列,构造该二叉树的过程如下:
1. 根据后序序列的最后一个元素建立根结点;
2. 在中序序列中找到该元素,确定根结点的左右子树的中序序列;
3. 在后序序列中确定左右子树的后序序列;
4. 由左子树的后序序列和中序序列建立左子树;
5. 由右子树的后序序列和中序序列建立右子树。