求不定积分:∫sin^3xdx

rt。怎么解
2024-11-06 14:42:41
推荐回答(5个)
回答(1):

∫sin^3xdx =- 1/3 * cos3x +c [注:(- 1/3* cos3x)'= sin3x

回答(2):

∫sin^3xdx=∫(sinx)^2*sinxdx=-∫(1-(cosx)^2)dcosx=-∫dcosx+∫(cosx)^2dcosx=-cosx+(1/3)*(cosx)^3+C

回答(3):

sin^3(x)=sinx(1-cos^2(x))∫sin^3xdx=∫sinxdx-∫cos^2(x)sin(x)dx=-cosx+(1/3)cos^3(x)+C

回答(4):

∫sin^3xdx=∫(sinx)^2*sinxdx=-∫(1-(cosx)^2)dcosx=-∫dcosx+∫(cosx)^2dcosx=-cosx+(1/3)*(cosx)^3+C

回答(5):

哥教你