数学配方法和十字交叉法

数学配方法和十字交叉法
2024-11-27 19:37:01
推荐回答(2个)
回答(1):

【配方法】
数学一元二次方程中的一种解法(其他两种为公式法和分解法)
具体过程如下:
1.将此一元二次方程化为ax^2+bx+c=0的形式(此一元二次方程满足有实根)
2.将二次项系数化为1
3.将常数项移到等号右侧
4.等号左右两边同时加上一次项系数一半的平方
5.将等号左边的代数式写成完全平方形式
6.左右同时开平方
7.整理即可得到原方程的根
例:解方程2x^2+4=6x
1.2x^2-6x+4=0
2.x^2-3x+2=0
3.x^2-3x=-2
4.x^2-3x+2.25=0.25 (+2.25:加上3一半的平方,同时-2也要加上3一半的平方让等式两边相等)
5.(x-1.5)^2=0.25 (a^2+2b+1=0 即 (a+1)^2=0)
6.x-1.5=±0.5
7.x1=2
x2=1
二次函数配方法技巧:
y=ax^2-bx+c 转换为 y=a(x+h)^2+k
=a(x+b/2a)^2+(c-b^2/4a)

【十字相乘法】
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1�6�1a2,把常数项c分解成两个因数c1,c2的积c1�6�1c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

例题 把2x^2;-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3+2×1
=5
1 3

2 1
1×1+2×3
=7
1 -1

2 -3
1×(-3)+2×(-1)
=-5
1 -3

2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x^2;-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
� ╳
a2 c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.

回答(2):

x^2-5x-6=0用十字相乘法:1 11 -6于是得x1=-1,x2=6用配方法:原式变为 (x-2.5)^2=49/4于是得x1=-1,x2=6