sinA·sinB+sinB·sinC+cos2B=1
sinAsinB+sinBsinC+1-2sinB*sinB=1
sinAsinB+sinBsinC=2sinBsinB
sinA+sinC=2sinB
a+c=2b
所以a,b,c成等差数列
2.cosC=(a^2+b^2-c^2)/2ab=-1/2
a^2+b^2-c^2=-ab
由(1)a^2+b^2-(4b^2-4ab+a^2)+ab=0
5ab-3b^2=0
所以a/b=3/5
1、sinA·sinB+sinB·sinC+cos2B=1
sinA·sinB+sinB·sinC=1-cos2B=2sin ²B
sinB≠0
sinA+sinC=2sinB
由正弦定理得:a+c=2b
所以a,b,c成等差数列
2、C=2π/3
c ²=a ²+b ²-2abcos2π/3=a ²+b ²+ab
c=2b-a
(2b-a) ²=a ²+b ²+ab
4b²+a²-4ab=a²+b²+ab
3b²=5ab
3b=5a
a/b=3/5
①∵sinA·sinB+sinB·sinC+cos2B=1
∴sinA·sinB+sinB·sinC+1-2sin²B=1
即sinA·sinB+sinB·sinC=2sin²B
∵sinB≠0
∴sinA+sinC=2sinB
∵a=2RsinA,b=2RsinB,c=2RsinC(正弦定理,R为外接圆半径)
∴a+c=2b
∴a,b,c成等差数列
(1)sinAsinB+sinBsinC+cos2B=1
sinAsinB+sinBsinC+1-2(sinB)^2=1
sinAsinB+sinBsinC=2(sinB)^2
sinA+sinC=2sinB
所以a+c=2b
(2)cosC=(a^2+b^2-c^2)/2ab=-1/2
a^2+b^2-c^2=-ab
由(1)a^2+b^2-(4b^2-4ab+a^2)+ab=0
5ab-3b^2=0
所以a/b=3/5